

晶采光電科技股份有限公司AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-800480L1TMQW-T00H
APPROVED BY	
DATE	

□Approved For Specifications

☑Approved For Specifications & Sample

AMPIRE CO., LTD.
Building A., 4F., No.116, Sec. 1, Sintai 5th Rd., Xizhi Dist,
New Taipei City 221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

1

Date: 2012/04/12 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2009/10/29	-	New Release	Emil
2010/01/14	-	Issued official part No. to AM-800480L1TMQW-T00H	Emil
2010/01/27	11	Include the Pin definition of TP FPC.	Emil
2010/03/10	-	Include specification of TP controller.	Emil
2010/04/09	16	Correct the coordinates of TP.	Emil
2010/04/30	26-27	Revise the Mechanical drawing.	Emil
2011/03/24	3	Correct the overall dimension	Kevin
2011/06/07	12	Add DE mode timing	Kevin
2011/10/07	12-15	Correct the AC Timing.	Emil
2012/04/12	3	Include the operating temp. of touch panel.	Emil
2012/04/12	5	Revise the LCD consumption current.	Emil

1. FEATURES

- (1) Construction: a-Si TFT-LCD with driving system, White LED Backlight and projected capacitive touch panel.
- (2) LCD type: Transmissive, Normally White
- (3) Number of the Colors: 16.7M colors (R,G,B 8bit digital each)
- (4) LCD Power Supply Voltage: 3.3V single power input, built-in power supply circuit.
- (5) ROHS compliant.

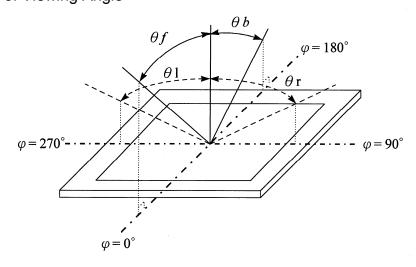
2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
Display size (diagonal)	5.0	inch
Resolution	800 (W) x RGB x 480 (H)	dot
Display area	110.6 (W) x67.4 (H)	mm
Pixel pitch	0.135 (W) x 0.135 (H)	mm
Overall dimension	118.5(W) x 135.0(H) x 4.81(D)	mm
Color configuration	R.G.B Vertical stripe	
Surface treatment	Antiglare(T.B.D)	
View Direction (Gray Inversion)	6 o'clock	
Power Consumption	20(Max)	watt

3. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Note
Power Supply for logic	VCC	-0.5	5.0	V	
Input Signal Voltage	VI	-0.5	VCC + 0.5	V	(1)
Operating Temperature of LCD	Тор	-20	70	°C	
Operating Temperature of Touch Panel	Тор	-20	60	°C	(2)
Storage Temperature	Tstg	-30	80	°C	

Note 1: Hsync, Vsync, DEN, DCLK, R0~R7, G0~G7, B0~B7

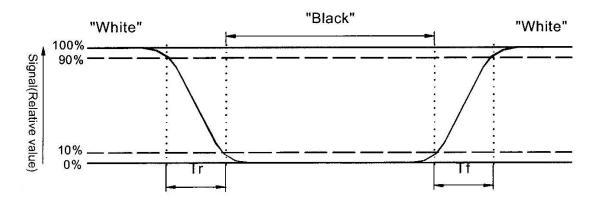

Note 2: Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

4. OPTICAL CHARACTERISTICS

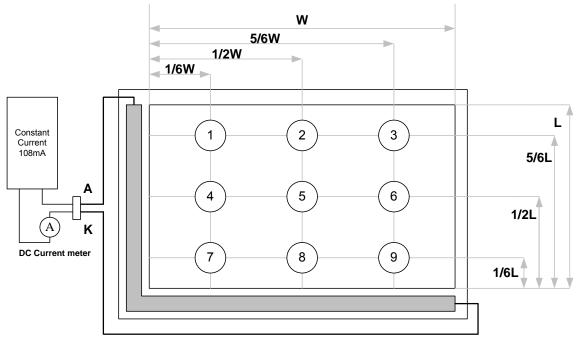
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Front	θf			70			(4)(2)(2)
Viewing	Back	θЬ	OD > 40		50			
Angle	Left	θΙ	CR≧10		70		deg.	(1)(2)(3)
	Right	θr			70			
Contrast ratio		CR	Θ=Φ=0°	150	250			(1)(3)
Response Time	2	T _r	Θ=Φ=0°		15	30	ms	(1)(4)
Response fillio	C	T _f	Θ-Ψ-0		35	50	ms	(1)(4)
Red	Rx		0.585	0.615	0.645			
	Reu	Ry		0.314	0.344	0.374		
	Green	Gx		0.277	0.307	0.337		
Color	Green	Gy	Θ=Φ=0°	0.532	0.562	0.592		(1)
chromaticity	Blue	Вх	Θ-Ψ-0	0.103	0.133	0.163		(1)
	Diue	Ву		0.120	0.150	0.180		
	White	Wx		0.279	0.309	0.339		
	vviile	Wy		0.320	0.350	0.380		
Luminance (ILED=120mA)		L	Θ=Φ=0°		360		cd/m²	(1)(5)
Luminance Un	iformity	ΔL	Θ=Φ=0°	70	-	-	%	(1)(5)(6)

Note 1: Ta=25°C. To be measured on the center area of panel after 10 minutes operation.

Note 2: Definition of Viewing Angle


Note 3: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.


Contrast ratio(CR)= Photo detector output when LCD is at "White" state
Photo detector Output when LCD is at "Black" state

Note 4: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time) respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 5: Luminance is measured at point 5 of the display.

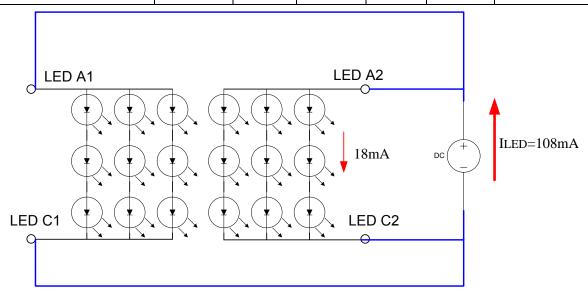
Note 6: Definition of Luminance Uniformity

 $\Delta L = [L(min.) \text{ of 9 points } / L(max.) \text{ of 9 points}] X 100\%$

5. ELECTRICAL CHARACTERISTICS

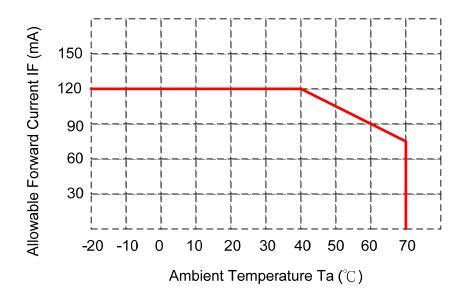
5.1 LCD driving

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Power supply voltage		Vcc	3.0	3.3	3.6	٧	
Input voltage for H Level		V _{IH}	0.7 VCC		VCC	٧	(1)
logic	L Level	V_{IL}	0		0.3 VCC	٧	(1)
Power Supply current		Icc		170		mA	(2)


Note 1: Hsync, Vsync, DEN, DCLK, R0~R7, G0~G7, B0~B7

Note 2: fV =60Hz , Ta=25°C , Display pattern : All Black

*:Will be reference only


5.2 Electrical characteristic of LED Back-light

Paramenter	Symbol	Min.	Тур.	Max.	Unit	Condiction
LED voltage	V _{AK}		9.9	10.8	V	I _{LED} =108mA,Ta=25°C
LED forward current	I _{LED}		108	120	mA	Ta=25℃

The constant current source is needed for white LED back-light driving.

When LCM is operated over 60°C ambient temperature, the I_{LED} of the LED back-light should be adjusted to 75mA max

5.3 Projected capacitive Touch Panel

5.3.1 Electrical Characteristics

Input Method: Finger Simulated stylus.

Insulation Impedance: Exceeds 20 Meg ohm or more at DC 10V

Operation voltage: 3.3V ~ 5V DC

Positional Accuracy: ± 1.5% in X and Y position within the viewing area (typical).

Interface: I2C

5.3.2 Durability Characteristics

Touch Durability: 300 million touches at a single point with 350 gram force.

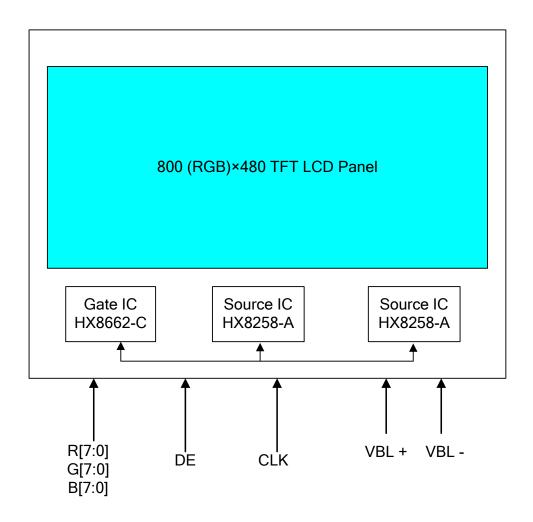
5.3.3 Environmental Characteristics

Operation Conditions: High temperature and relative humidity (RH): tested at +50 °C

at 90% RH non-condensing for 240 hours

Low and high temperature : -15°C~70 °C, 50% relative humidity,

non-condensing


Storage Conditions: Low and high temperature: -30°C~80°C, 50% relative humidity,

non-condensing

5.3.4 Touch Activation Characteristics

Finger Simulated Stylus	25~50 grams of force
Pen Stylus (Active)	25~50 grams of force

6. BLOCK DIAGRAM

7. INTERFACE PIN ASSIGNMENT

Pin No	Symbol	Function
1	GND	Power Ground
2	GND	Power Ground
3	VCC	3.3V Power Supply for LCD
4	VCC	3.3V Power Supply for LCD
5	R0	Red Data 0 (LSB)
6	R1	Red Data 1
7	R2	Red Data 2
8	R3	Red Data 3
9	R4	Red Data 4
10	R5	Red Data 5
11	R6	Red Data 6
12	R7	Red Data 7 (MSB)
13	G0	Green Data 0 (LSB)
14	G1	Green Data 1
15	G2	Green Data 2
16	G3	Green Data 3
17	G4	Green Data 4
18	G5	Green Data 5
19	G6	Green Data 6
20	G7	Green Data 7 (MSB)
21	B0	Blue Data 0 (LSB)
22	B1	Blue Data 1
23	B2	Blue Data 2
24	B3	Blue Data 3
25	B4	Blue Data 4
26	B5	Blue Data 5
27	B6	Blue Data 6
28	B7	Blue Data 7(MSB)
29	GND	Power Ground
30	DCLK	Clock Signals
31	DISP	Display on/off (High: on, Low :off)
32	HSYNC	Horizontal SYNC signal.
33	VSYNC	Vertical SYNC signal
34	DENA	Data Enable signal (to settle the viewing area)
35	NC	No Connect
36	NC	No Connect
37	NC	No Connect
38	NC	No Connect
39	SC	Scan direction control (Low= Reverse, High= Normal)
40	GND	Power Ground
41	GND	Power Ground

Date: 2012/04/12 AMPIRE CO., LTD.

42	LED C1	LED cathode 1	
43	LED A1	LED anode 1	
44	LED C2	LED cathode 2	
45	LED A2	LED anode 2	

Remark:

1. GND Pin must ground contact, can not be floating.

2. SC are controlled function

(L/R)	(U/D)	Function
1	0	Normally display
0	1	Left and Right opposite , Up and Down opposite

Pin definition of TP FPC:

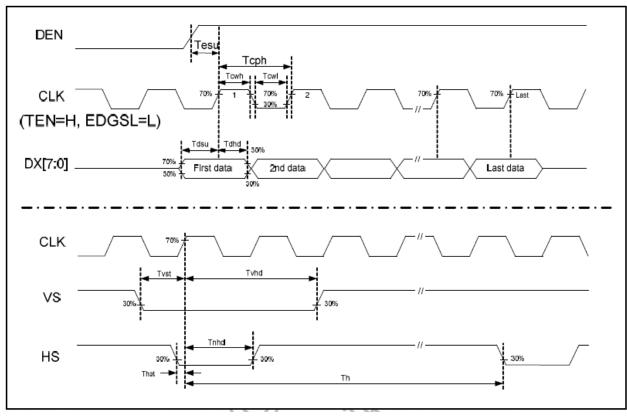
Pin No	Symbol	Function
1	GND	Ground terminal.
2	SDA	I2C Interface
3	SCL	12C Interface
4	VDD	Power Supply for TP controller
5	INT	IRQ Terminal
6	XRES	Terminal of Reset TP controller.

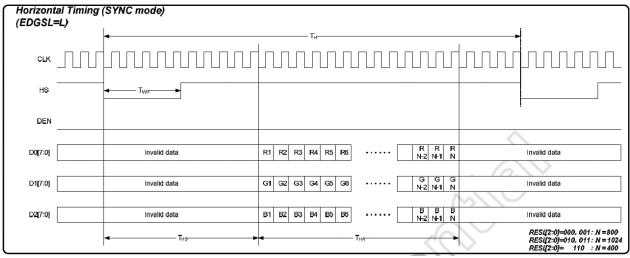
8. INTERFACE TIMING

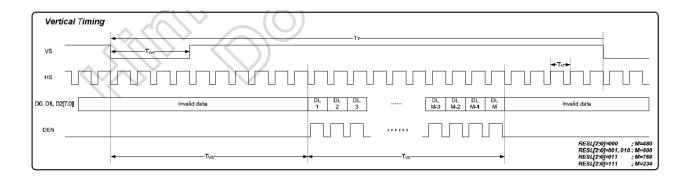
8.1. LCD Interface

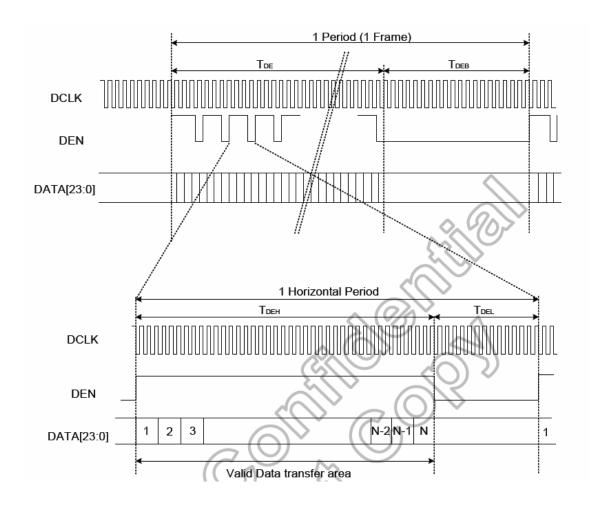
PARAMETER	Symbol	Symbol Spec.							
PARAMETER	Symbol	Min.	Тур.	Тур. Мах.					
HS setup time	T _{hst}	6	-		ns				
HS hold time	T _{hhd}	6	-	-	ns				
VS setup time	T _{vst}	6	-	-	ns				
VS hold time	T_{vhd}	6	-	0.5	ns				
Data setup time	T_{dsu}	6	-	$\mathcal{N}_{I/C}$	ns				
Data hold time	T_{dhd}	6			ns				
DEN setup time	T_{esu}	6	- 10	>	ns				
Source output settling time	T _{ST}	-	(15	μs				
Source output loading R	R_{SL}	- ^	2/	-	kΩ				
Source output loading C	C _{SL}	- >	60	- (/	pF				
Repair OP output loading C	C _{RL}	٨. ((150	7	pF				
Repair OP output settling time	T _{RT}))	15	μs				
POL output delay time	T_{DP}	グイン		40	ns				

Sync mode

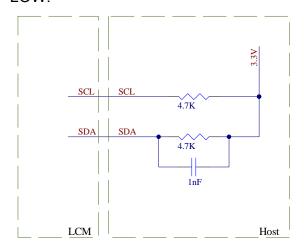

Parameter	Symbol			Unit	
raiametei	Symbol	Min.	Тур.	Max.	5
CLK frequency	F _{CPH}	29.93	33.26	36.59	MHz
CLK period	Тсрн	2//	30.06	-	ns
CLK pulse duty	T _{CWH}	40	50	60	%
HS period	T _H	930	1056	1057	T_CPH
HS pulse width	TWH	7	128	-	T_CPH
HS-first horizontal data time	T _{HS}	່ >	THD[7:0]+8	38	T_CPH
HS Active Time	T _{HA}	-	800	-	T_CPH
VS period	T_V	490	525	526	T_H
VS pulse width	T_{WV}	1	2	-	T_H
VS-DE time	T _{VS}	S	TVD[6:0]+	8	T_H
VS Active Time	T_VA	-	480	-	T_H

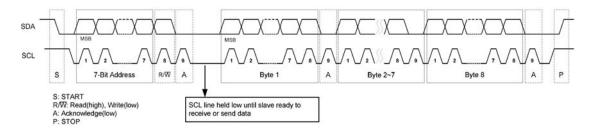

Note: (1) T_{HS}+T_{HA}<T_H


● DE mode


Parameter	Symbol		Spec.					
Falailletei	Symbol	Min.	Тур.	Max.	Unit			
CLK frequency	F _{CPH}	29.93	33.26	36.59	MHz			
CLK period	T _{CPH}		30.06	リ <u>-</u> ~	ns			
CLK pulse duty	T _{CWH}	40	50	60	%			
DE period	TDEH+TDEL	1000	1056	1200	T _{CPH}			
DE pulse width	TDEH	€	800	-	T _{CPH}			
DE frame blanking	T _{DEB}	10	45	110	T _{DEH} +T _{DEL}			
DE frame width	T _{DE}		480	-	T _{DEH} +T _{DEL}			

Parameter	Symbol		Spec.						
Falailletei	Syllibol	Min.	Тур.	Max.	Unit				
OEV pulse width	T_OEV	-	150	-	T_{CPH}				
CKV pulse width	T _{CKV}	-	133	-	T_{CPH}				
DE(internal)-STV time)T₁	-	4	-	T_{CPH}				
DE(internal)-CKV time	T ₂	-	40	-	T_{CPH}				
DE(internal)-OEV time	T ₃	-	23	-	T_{CPH}				
DE(internal)-POL time	T_4	-	157	-	T_{CPH}				
STV pulse width	-	-	1	-	T_H				

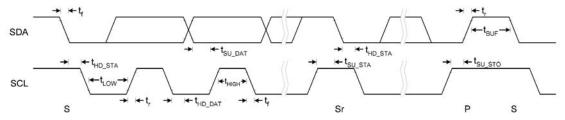




8.2.1 I2C Interface (T/P Controller)

ST1332 equipped with I2C provide two wires, serial data (SDA) and serial clock (SCL), to carry information transfers at up to 400 kbit/s(Fast mode). ST1332 plays a slave role in I2C transfer. Both SDA and SCL are bidirectional lines, connected to IOVDD via pull-up resistors. All transactions begin with a START (S) and can be terminated by a STOP (P). 7-Bit address follows START to recognize device. Each bye is 8-bit length and followed by an acknowledge bit. A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

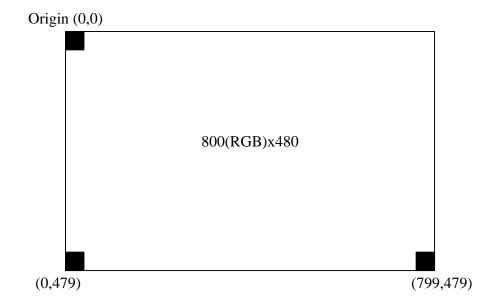
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.



^{* 7-}Bit Address=0x55

Master can reset ST1332 through RESET pin. RESET pin is low active and needs hold low for 1us to take effect.

^{*} Read mode only.


8.2.2 AC Timing of I2C Interface

Conditions: VDD = IOVDD = 3.3V, GND = 0V, T _A = 25°C										
Symbol	Parameter		Unit							
Cymison	T didiliotor	Min.	Тур.	Max.	-					
f _{SCL}	SCL clock frequency	0	-	400	kHz					
t_{LOW}	Low period of the SCL clock	1.3	-	-	us					
t _{HIGH}	High period of the SCL clock	0.6	-	-	us					
t _f	Signal falling time	-	-	300	ns					
t _r	Signal rising time	-	-	300	ns					
t _{SU_STA}	Set up time for a repeated START condition	0.6	-	-	us					
t _{HD_STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	0.6	-	-	us					
t _{SU_DAT}	Data set up time	100	-	-	ns					
t _{HD DAT}	Data hold time	0	-	0.9	us					
t _{SU_STO}	Set up time for STOP condition	0.6	-	-	us					
t _{BUF}	Bus free time between a STOP and START condition	1.3	-	-	us					
Cb	Capacitive load for each bus line	-	_	400	pF					

8.2.3 TP controller register table

Reg. Addr.	Name	Bit7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0x10	Proximity/finger	Reserve Fingers											
0x11	Gesture				Res	erve							
0x12	XY0 Coord.	Valid		X0_H				Y0_H					
UXIZ	(High byte)	valid	X0_11					10_11					
0x13	X0 Coord.	X0 L											
UXIS	(Low byte)	\0_L											
0x14	Y0 Coord.												
0 1 1 4	(Low byte)	Y0_L											
0x15	XY1Coord.	Valid	X1_H					Y1 H					
0.00	(High byte	valiu					Y _						
0x16	X1 Coord.				V1	ı							
0.00	(Low byte)	X1_L											
0v17	Y1 Coord.	Y1 L											
0x17	(Low byte)				T I								

8.2.4 Sample Code

```
if((ReadINT())==0)
   I2C_EE_BufferRead(pbuffer,0xAB,8); // Device Addr.=0x55
   PCT_Z[0]=(u16) ((u16)(pbuffer[0]));
                                          // Register 0x10
   PCT_Z[1]=(u16) ((u16)(pbuffer[1]));
                                          // Register 0x11
   PCT_Z[2]=(u16) ((u16)(pbuffer[2]));
                                          // Register 0x12
                                          // Register 0x13
   PCT_Z[3]=(u16) ((u16)(pbuffer[3]));
                                          // Register 0x14
   PCT Z[4]=(u16) ((u16)(pbuffer[4]));
   PCT_Z[5]=(u16) ((u16)(pbuffer[5]));
                                          // Register 0x15
   PCT_Z[6]=(u16) ((u16)(pbuffer[6]));
                                          // Register 0x16
   PCT_Z[7]=(u16) ((u16)(pbuffer[7]));
                                          // Register 0x17
    if (PCT Z[2]>0x007F)
      PCT_Z[8]=(u16) ((u16)((pbuffer[2]\&0x0070) << 4|pbuffer[3]));
      PCT_Z[9]=(u16) ((u16)((pbuffer[2]&0x0007)<<8|pbuffer[4]));
     if (PCT_Z[5]>0x007F)
      PCT_Z[10]=(u16) ((u16)((pbuffer[5]&0x0070)<<4|pbuffer[6]));
      PCT_Z[11]=(u16) ((u16)((pbuffer[5]&0x0007)<<8|pbuffer[7]));
     PCT_X[0]=PCT_Z[8];
                             // Coord.X0
     PCT_Y[0]=PCT_Z[9];
                             // Coord.Y0
     PCT_X[1]=PCT_Z[10]; // Coord.X1
     PCT Y[1]=PCT Z[11]; // Coord.Y1
}
}
```

9. DISPLAYED COLOR AND INPUT DATA

DATA SIGNAL

												INI	PUT	DA	TA										
	LOR	R DATA						G DATA						B DATA											
	LOI	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	В4	В3	B 2	В1	В0
		MSB							LSB	MSB							LSB	MSB					Ľ		LSB
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
BASIC	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
COLOR	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									
																					ļ		ļ		
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
GREEN																									
																			<u> </u>		ļ				
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
DI											ļ												<u> </u>		
BLUE											ļ														
																			ļ				ļ		
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

10. QUALITY AND RELIABILITY

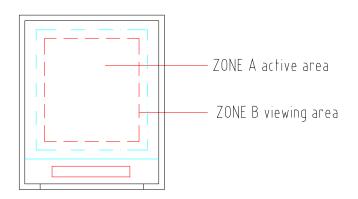
10.1. Test Conditions

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C $60\pm25\%$ RH. Humidity

10.2. Sampling Plan

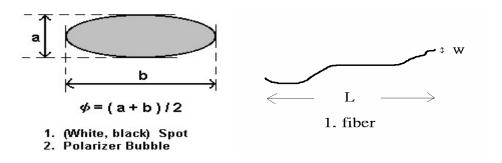
Sampling method shall be in accordance with MIL-STD-105E, level II, normal single sampling plan.

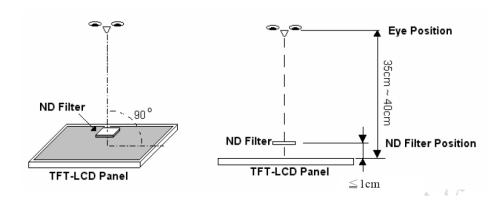

10.3. Acceptable Quality Level

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

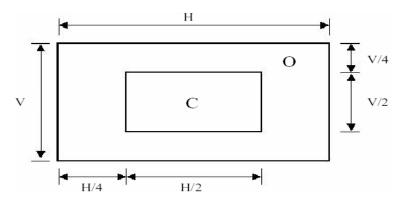
10.4. Appearance

Date: 2012/04/12


An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under florescent light. The inspection area of LCD panel shall be within the range of following limits.

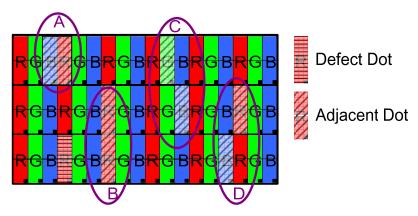

10.5. Incoming Inspection Standard

	Defect Ty	pe			Note				
				φ<	0.15m	m	Ig	nore	
		Spot	0.1	5mm≦	≨φ≦0	N	l ≦4	(1)	
					mm<	•		1= 0	
Visual		Fiber	0.0	03mm∙ L∶	<w≦0 ≦5mm</w≦0 		N	l≦3	(1)
Defect	Internal		1.0	mm<	W, 1.5	mm<	L N	V= 0	
20.000		Dolorizor		$\varphi < 0$).15mn	n	Ig	nore	
		Polarizer Bubble	0.1	5mm ≦	≦φ≦0	.5mm	N	l≦2	(1)
		5455.0		0.5	mm<	φ	1	V= 0	
		Mura	It' OK	if mur		ght vis O filter	ible th	rough	
		P							
	Br	C Area	O Area	Total	C Area	O Area	Total	(3)	
			N≦0	N≦2	N≦2	N≦2	N≦3	N≦5	(2)
	D	ark Dot	N≦2	N≦3	N≦3	N≦3	N≦5	N≦8	
Electrical Defect	To	otal Dot		N≦4		N≦5	N≦6	N≦8	(2)
	Two A	Adjacent Dot	N≦0	N≦1 pair	N≦1 pair	N≦1 pair	N≦1 pair	N≦1 pair	(4)
	Three or	More Adjacent Dot	Not Allowed						
	Lir	ne Defect			Not Al	llowed			


[Note1] W: Width[mm], L: Length[mm], N: Number, φ: Average Diameter

[Note2] Bright dot is defined through 6% transmission ND Filter as following.

[Note3]



C Area: Center of display area C Area: Outer of display area

[Note4]

Date: 2012/04/12

Judge defect dot and adjacent dot as following. Allow below (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.

- (1) The defects that are not defined above and considered to be problem shall be reviewed and discussed by both parties.
- (2) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.

10.6. Reliability Test

Test Item	Test Conditions								
High Temperature Operation	70±3°C , t=240 hrs								
Low Temperature Operation	-20±3°C , t=240 hrs								
High Temperature Storage	80±3°C , t=240 hrs	1,2							
Low Temperature Storage	-30±3°C , t=240 hrs	1,2							
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2							
Humidity Test	40 °C, Humidity 90%, 96 hrs	1,2							
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2							

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Definitions of life end point :

Date: 2012/04/12

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

24

11. USE PRECAUTIONS

11.1. Handling precautions

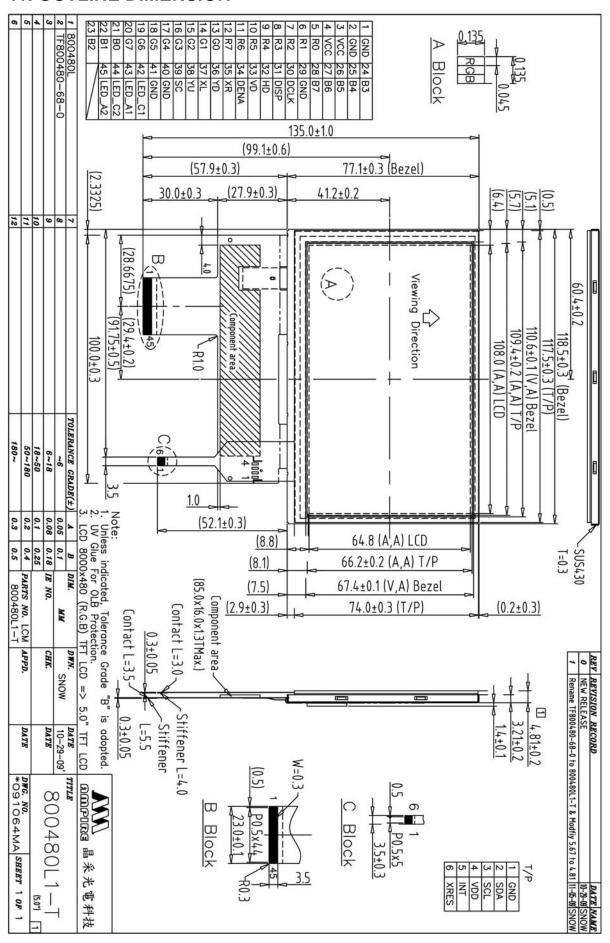
- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzene and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

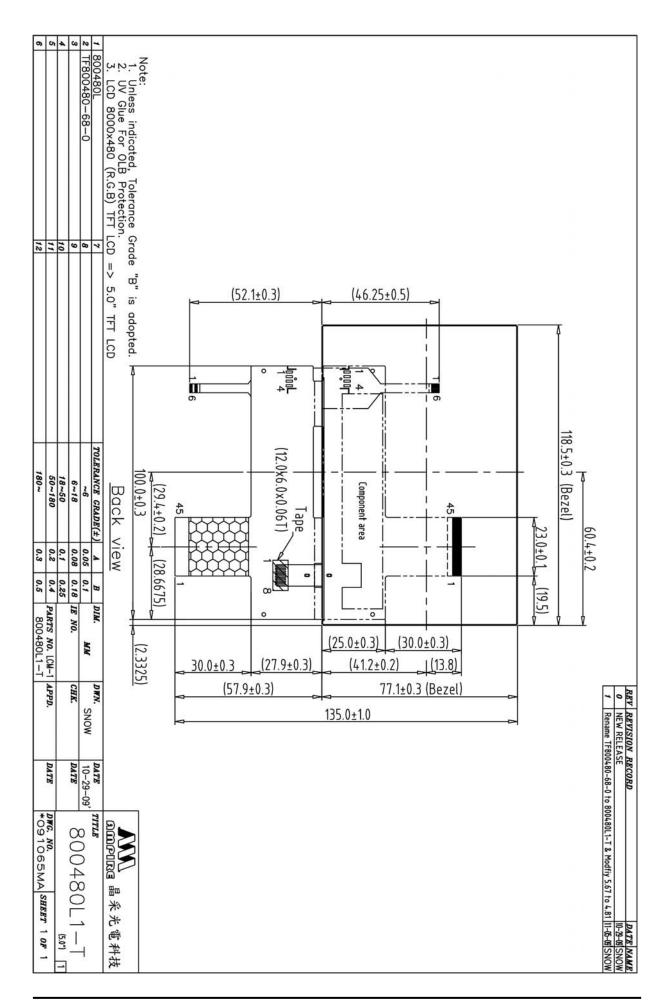
11.2. Installing precautions

- The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. 1MΩ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

11.3. Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.


11.4. Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2VCC or less and H level: 0.8VCC or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

11.5. Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warranty for all products and three months warrantee for all repairing products.

11. OUTLINE DIMENSION

