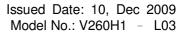


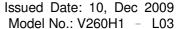
TFT LCD Tentative Specification

MODEL NO.: V260H1 - L03

Approved Dy	TV Product Marketing & Management Div					
Approved By	Chao-Chun Chung					
Reviewed By	QA Dept.	Product Development Div.				
Treviewed by	Hsin-Nan Chen	WT Lin				
Dropored Dv	LCD TV Marketing and Product Managemen					
Prepared By	CY Chang	Delia Lin				



- CONTENTS -


REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT		7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		10
5. INTERFACE PIN CONNECTION 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 BLOCK DIAGRAM OF INTERFACE 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT		11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		18
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		22
8. DEFINITION OF LABELS 8.1 CMO MODULE LABEL		26
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		27
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIO 10.2 SAFETY PRECAUTIONS 10.3 STORAGE PRECAUTIONS	DNS	29
11. REGULATORY STANDARD 11.1 SAFETY		30
12. MECHANICAL CHARACTERISTICS		31

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 0.0	Dec. 10,'09	All	All	Tentative Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V260H1- L03 is a TFT Liquid Crystal Display module with 4U-CCFL Backlight unit and 2ch-LVDS interface. The display diagonal is 26". This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit/color).

1.2 FEATURES

- Optimized Brightness 400nits
- Contrast Ratio (800:1)
- Fast Response Time (5ms)
- Color Saturation NTSC 72%
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) Only Mode
- LVDS (Low Voltage Differential Signaling) Interface
- Viewing Angle: 160(H)/150(V) (CR>10) TN Technology
- -Color Reproduction (Nature Color)

1.3 APPLICATION

- TFT LCD TVs
- Optimized Brightness, Multi-Media Displays

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	576 (H) x 324 (V) (26" Diagonal)	mm	(1)
Bezel Opening Area	580.8 (H) x 328.8 (V)	mm	(1)
Driver Element	a-si TFT Active Matrix	_	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.100 (H) x 0.300 (V)	mm	
Pixel Arrangement	RGB Vertical Stripe	_	
Display Colors	16.7M	color	
Display Operation Mode	Transmissive Mode / Normally White	_	
Surface Treatment	Anti-Glare Coating (Haze 25%) Hard Coating (3H)	_	

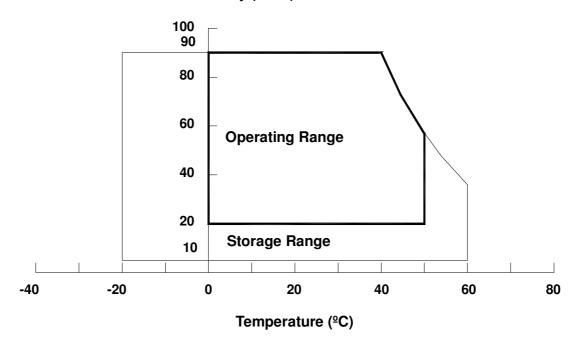
1.5 MECHANICAL SPECIFICATIONS

lt.	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	625	626	627	mm	
Module Size	Vertical(V)	372	373	374	mm	
	Depth(D)	31	32	33	mm	To Rear
Weight		-	3445	-	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Tentative

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Syllibol	Min.	Max.	Offit	NOLE	
Storage Temperature	T _{ST}	-20	+60	ōC	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	oC	(1), (2)	
Shock (Non-Operating)	S _{NOP}	_	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	_	1.0	G	(4), (5)	

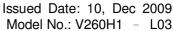
Note (1) Temperature and relative humidity range is shown in the figure below.

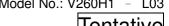
- (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 30 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Tentative

2.2 ELECTRICAL ABSOLUTE RATINGS


2.2.1 TFT LCD MODULE

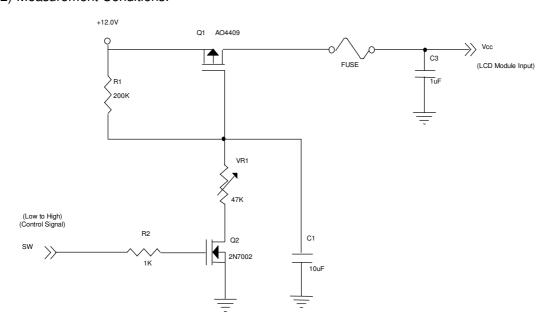

Item	Symbol	Va	lue	Unit	Note	
	Syllibol	Min.	Max.	Offic	Note	
Power Supply Voltage	Vcc	-0.3	13.5	V	(1)	
Input Signal Voltage	VIN	-0.3	3.6	V	(1)	

2.2.2 BACKLIGHT UNIT

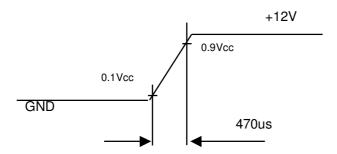
Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Lamp Voltage	V _W	Ta = 25 °C		_	3000	V_{RMS}	
Power Supply Voltage	V_{BL}	_	0	_	30	٧	(1)
Control Signal Level	_	_	-0.3	_	7	٧	(2), (3)

- Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.
- Note (2) No moisture condensation or freezing.
- Note (3) The control signals includes Backlight On/Off Control, Internal PWM Control and External PWM Control.

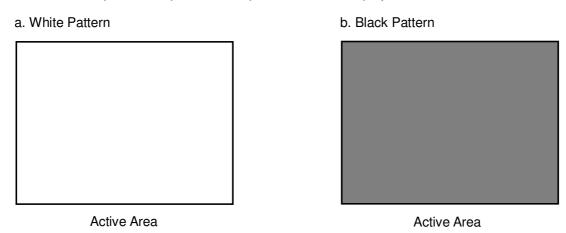
3. ELECTRICAL CHARACTERISTICS

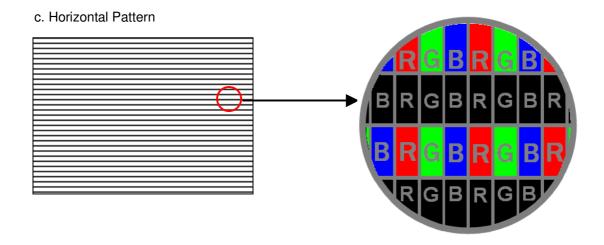

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \,{}^{\circ}C$

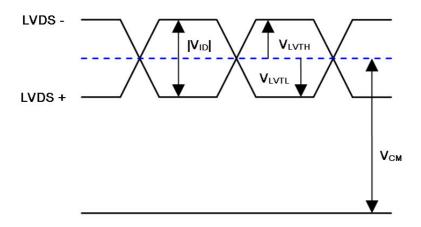

Parameter		Symbol		Value	Unit	Note			
Parameter			Syllibol	Min.	Тур.	Max.	Offic	Note	
Power Sup	oply Voltage		V _{CC}	10.8	12	13.2	V	(1)	
Rush Curr	ent		I _{RUSH}	_	_	3.5	Α	(2)	
White Pattern		_	_	0.29	_	Α			
Power Sup	oply Current	Horizontal Stripe	_	_	0.47	_	Α	(3)	
		Black Pattern	_	_	0.48	0.60	Α		
		Differential Input High Threshold Voltage		+100	_	_	mV		
	Differential In	Differential Input Low Threshold Voltage		_	_	-100	mV		
LVDS interface		Common Input Voltage		1.0	1.2	1.4	V	(4)	
	Differential in	Differential input voltage		200	_	600	mV		
	Terminating	Terminating Resistor		_	100	_	ohm		
CMOS	Input High T	Input High Threshold Voltage		2.7	_	3.3	V		
interface	Input Low Th	Input Low Threshold Voltage		0	_	0.7	V		

Note (1) The module should be always operated within above ranges.


Note (2) Measurement Conditions:

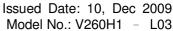


Vcc rising time is 470us



Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

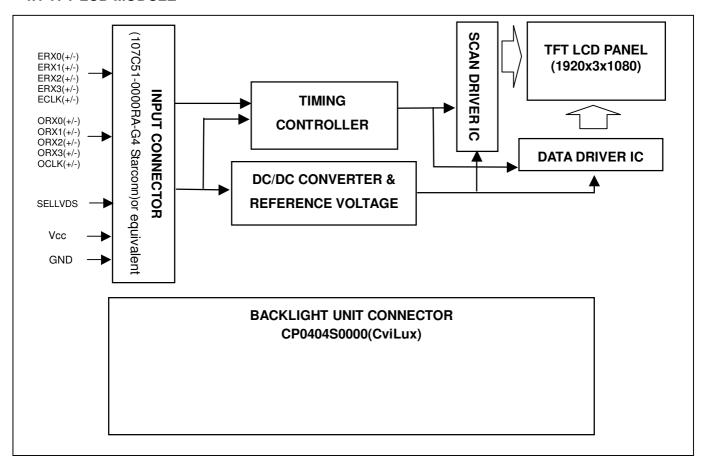
Note (4) The LVDS input characteristics are as follows:

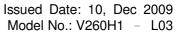


3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Syllibol	Min. Typ. Max.		Max.		
Lamp Voltage	V_W	-	1380	-	V_{RMS}	$I_L = 7.5 \text{mA}$
Lamp Current(HI-Side)	ΙL	1	7.5	-	mA_RMS	-
Lown Ctarting Valtage	W	-	-	1657	V_{RMS}	(1), Ta = 0 ^o C
Lamp Starting Voltage	Vs	-	-	1593	V_{RMS}	(1), Ta = 25 ^o C
Operating Frequency	Fo	40	-	80	KHz	(2)
Lamp Life Time	L_BL	50,000		-	Hrs	(3)


- Note (1) The lamp starting voltage V_S should be applied to the lamp for more than 1 second under starting up duration. Otherwise the lamp could not be lighted on completed.
- Note (2) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (3) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition Ta = $25 \pm 2^{\circ}$ C and I_L = $7.0^{\sim} 8.0 \text{mA}_{\text{RMS}}$.



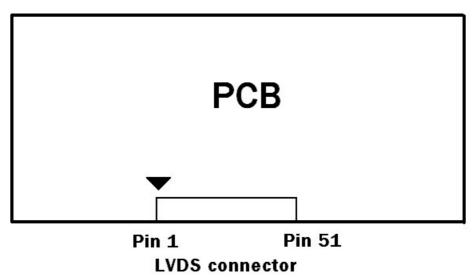
4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment


Pin	Name	Description	Note			
1 \	VCC	+12V power supply				
2 \	VCC	+12V power supply				
3 \	VCC	+12V power supply				
4	VCC	+12V power supply				
5 \	VCC	+12V power supply				
6 (GND	Ground				
7 (GND	Ground				
8 (GND	Ground				
9 (GND	Ground				
10	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0				
11 (ORX0+	Odd pixel Positive LVDS differential data input. Channel 0				
12 (ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(1)			
13	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(1)			
14	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2				
15 (ORX2+	Odd pixel Positive LVDS differential data input. Channel 2				
16	GND	Ground				
17 (OCLK-	Odd pixel Negative LVDS differential clock input	(1)			
18	OCLK+	Odd pixel Positive LVDS differential clock input.	(1)			
19 (GND	Ground				
20	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(1)			
21 (ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(1)			
22	N.C.	No Connection	(3)			
23	N.C.	No Connection	(3)			
24	GND	Ground				
25 E	ERX0-	Even pixel Negative LVDS differential data input. Channel 0				
26 E	ERX0+	Even pixel Positive LVDS differential data input. Channel 0				
27 E	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	(1)			
28 E	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(1)			
29 E	ERX2-	RX2- Even pixel Negative LVDS differential data input. Channel 2				
30 E	ERX2+					
31 (GND	Ground				
32 E	ECLK-	Even pixel Negative LVDS differential clock input.	(1)			
33 E	ECLK+	Even pixel Positive LVDS differential clock input.	(1)			

34	GND	Ground	
35	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(1)
36	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(1)
37	N.C.	No Connection	(2)
38	N.C.	No Connection	(3)
39	GND	Ground	
40	SCL	EEPROM Serial Clock	
41	N.C.	No Connection	(2)
42	N.C.	No Connection	(3)
43	WP	EEPROM Write Protection	
44	SDA	EEPROM Serial Data	
45	LVDS_SEL	High(3.3V) or open for VESA, Low (GND) for JEIDA	(4)
46	N.C.	No Connection	
47	N.C.	No Connection	
48	N.C.	No Connection	(3)
49	N.C.	No Connection	(3)
50	N.C.	No Connection	
51	N.C.	No Connection	

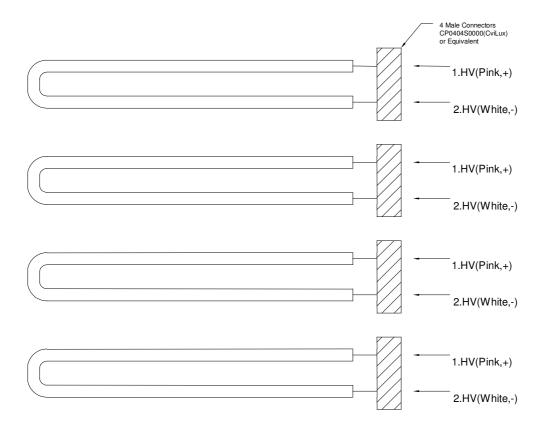
Note (1) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

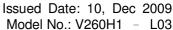
Note (2) LVDS connector pin order defined as follows

Note (3) Reserved for internal use. Please leave it open.

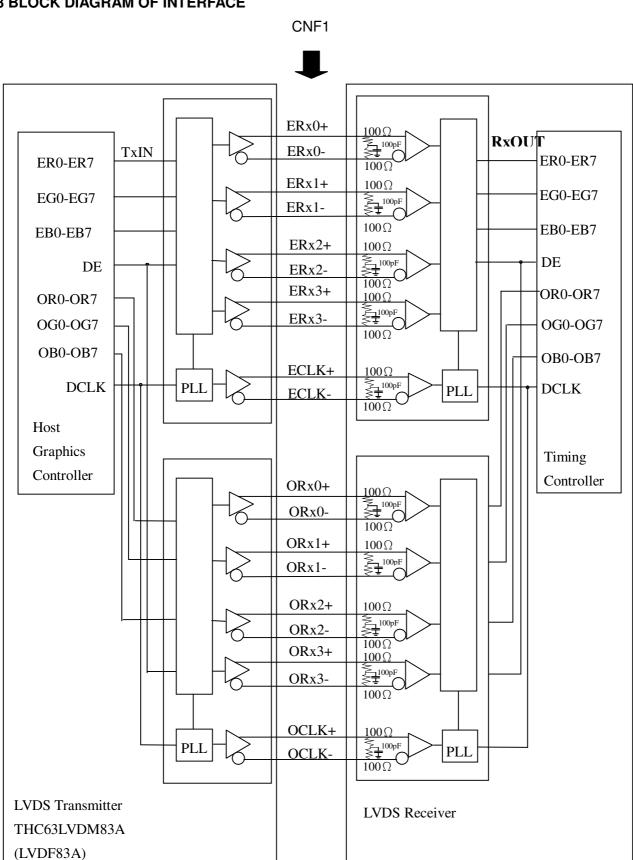
Note (4) Low: JEIDA LVDS Format (Connect to GND), High or open: VESA Format. (Connect to +3.3V)

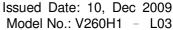
Tentative


5.2 BACKLIGHT UNIT

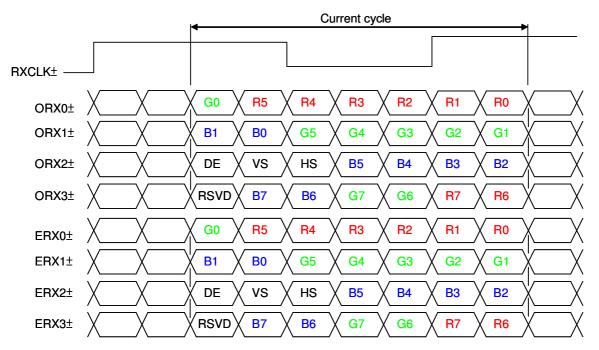

The pin configuration for the housing and leader wire is shown in the table below.

Housing: 1.CP0404S0000(CviLux)


Pin No.	Symbol	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White


Note (1) The backlight interface housing for high voltage side is a model 1. CP0404S0000(CviLux).

5.3 BLOCK DIAGRAM OF INTERFACE

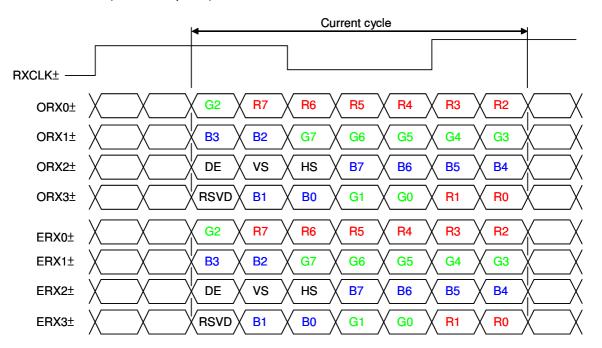

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data

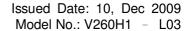
DE: Data enable signal DCLK: Data clock signal

- Note (1) The system must have the transmitter to drive the module.
- Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.4 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=H or open)




JEDIA LVDS format: (SELLVDS pin=L)

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

Data Signal																									
	Color				Red	b							Gre	een							В	lue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	GO	B7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rica	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
arcon	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
2.00	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Tentative

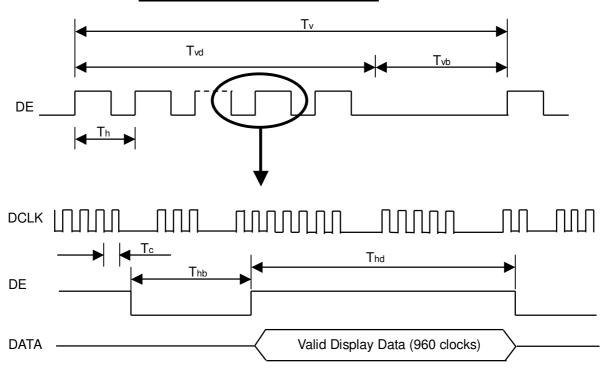
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

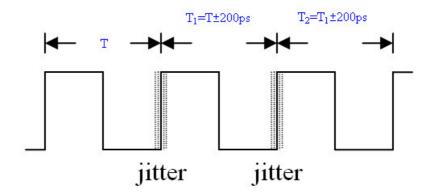
The input signal timing specifications are shown as the following table and timing diagram.

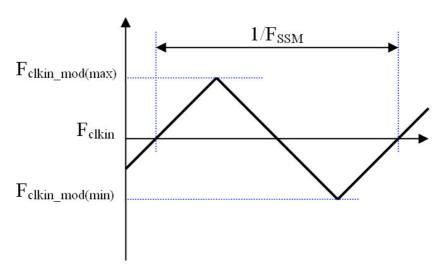
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T_{rcl}	1	1	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(4)
LVDS	Setup Time	Tlvsu	600	_	_	ps	
Receiver Data	Hold Time	Tlvhd	600		_	ps	(5)
	Frame Rate	F_{r5}	47	50	53	Hz	
Vertical	Trame riate	F _{r6}	57	60	63	Hz	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	35	45	55	Th	_
Horizontal	Total	Th	1050	1100	1150	Тс	Th=Thd+Thb
Active	Display	Thd	960	960	960	Тс	_
Display Term	Blank	Thb	90	140	190	Tc	_

Note (1) Please make sure the range of pixel clock has follow the below equation:

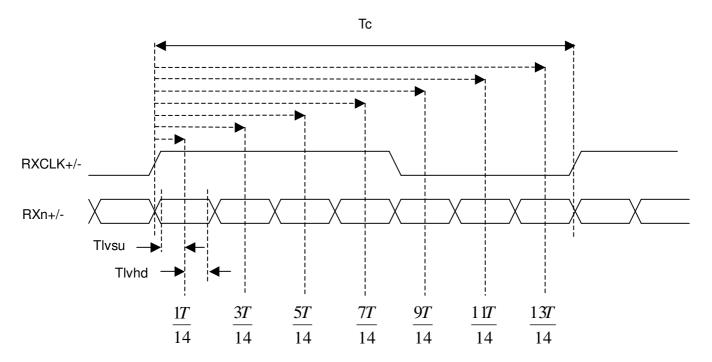

$$Fclkin(max) \ge Fr6 \times Tv \times Th$$

$$Fr5 \times Tv \times Th \ge Fclkin(min)$$


Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

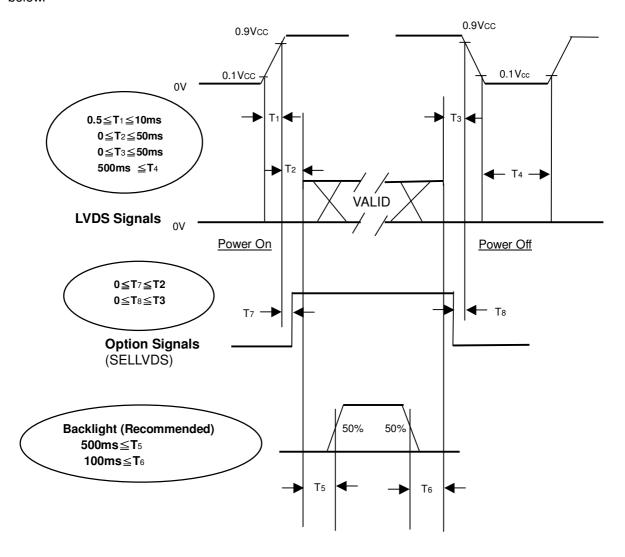

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.


LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

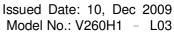
To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Tentative

7. OPTICAL CHARACTERISTICS

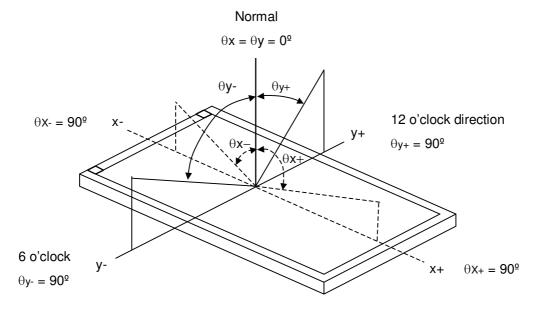

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	12.0	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Lamp Current	I_L	7.5 ± 0.5	mA			
Oscillating Frequency (Inverter)	F_W	40 ± 3	KHz			
Vertical Frame Rate	Fr	60	Hz			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		(600)	(800)		-	(2)	
Response Time		T_R			(1.3)	(2.2)	mo	(2)	
		T_F			(3.7)	(5.8)	ms	(3)	
Center Luminance of White		L _C		(320)	(400)			(4)	
White Variation		δW				(1.3)	-	(7)	
Cross Talk		CT	$\theta_x=0^\circ$, $\theta_Y=0^\circ$			(4)	%	(5)	
	Red	Rx			(0.639)		-	(6)	
		Ry	Viewing angle	Typ. (-0.03)	(0.330)	Typ. (+0.03)	-		
	Green	Gx	at normal direction		(0.270)		-		
Color		Gy			(0.598)		-		
Chromaticity	Blue	Bx			(0.150)		-		
Chilomaticity		By			(0.064)		-		
	White	Wx			(0.280)		Torget		
		Wy			(0.290)		Target		
	Color Gamut	CG		(68)	(72)		%	NTSC	
	Horizontal	θ_{x} +		(70)	(80)				
Viewing	ПОПДОПІАІ	θ_{x} -	CR≥10	(70)	(80)		Dog	(1)	
Angle	Vertical	θ_{Y} +	Un∠iu	(70)	(80)		Deg.	(1)	
	vertical	θ_{Y} -		(60)	(70)				



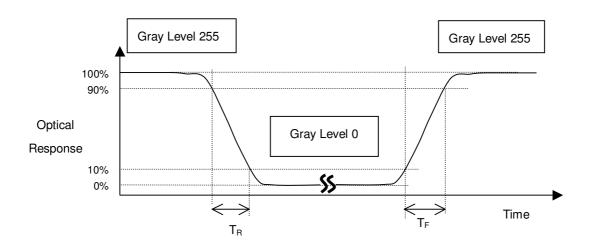
Note (1) Definition of Viewing Angle (θx , θy):

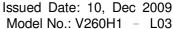
Viewing angles are measured by Autronic Conoscope Cono-80.

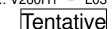
Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255


L 0: Luminance of gray level 0


CR = CR(5),

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

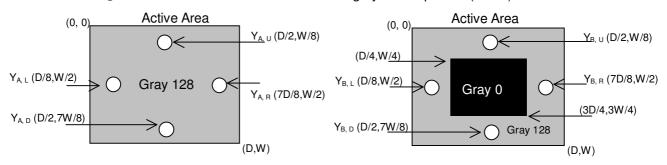
Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

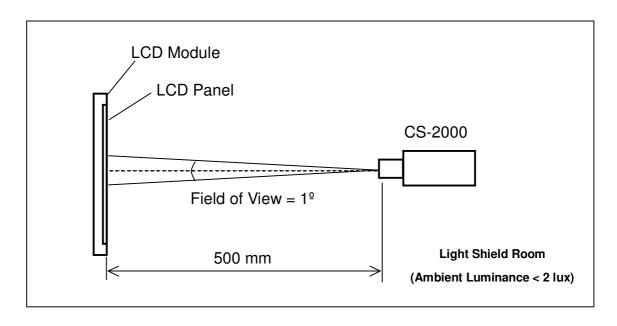
$$L_{C} = L(5)$$

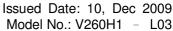
L(X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

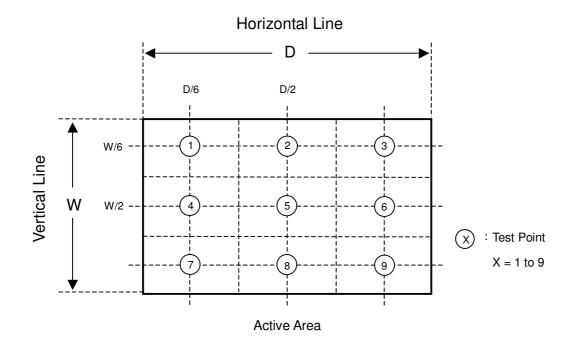
Where:


Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)


Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

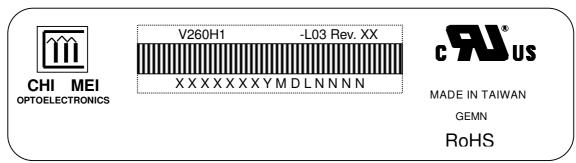
The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement (CS-1000 or CA-210 calibrated by CS-2000) should be executed after lighting backlight for 1 hour in a windless room.

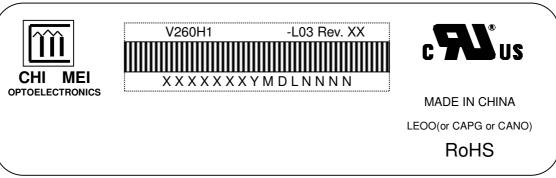


Note (7) Definition of White Variation (δW):

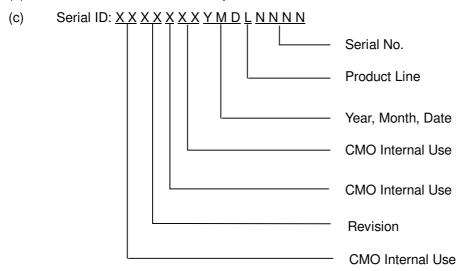
Measure the luminance of gray level 255 at 9 points.

 $\delta W = \text{Maximum} \left[L \left(1 \right), L \left(2 \right), L \left(3 \right), L \left(4 \right), L \left(5 \right), L \left(6 \right), L \left(7 \right), L \left(8 \right), L \left(9 \right) \right] / \\ \text{Minimum} \left[L \left(1 \right), L \left(2 \right), L \left(3 \right), L \left(4 \right), L \left(5 \right), L \left(6 \right), L \left(7 \right), L \left(8 \right), L \left(9 \right) \right]$



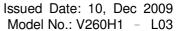

Tentative

8. DEFINITION OF LABELS


8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V260H1-L03
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.


Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

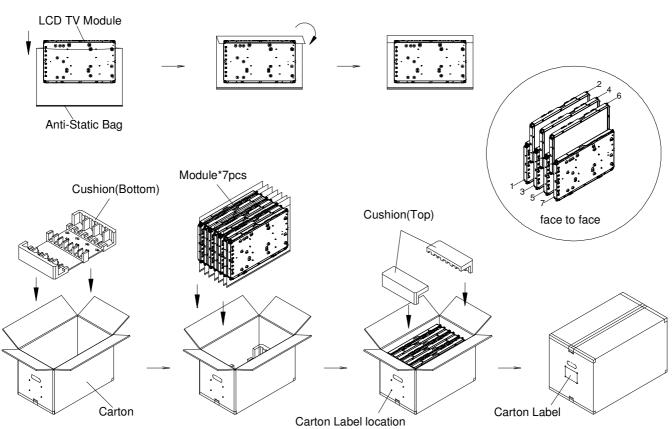
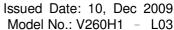
(1) 7 LCD TV modules / 1 Box

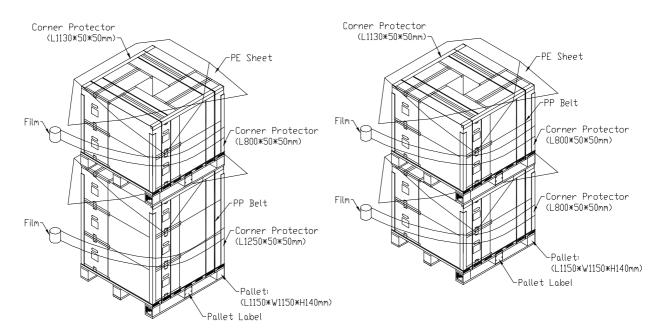
(2) Box dimensions: 713(L)x429(W)x453(H)mm

(3) Weight: approximately 28.48 Kg (7 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method


Figure.9-1 packing method

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft Container)

Air Transportation

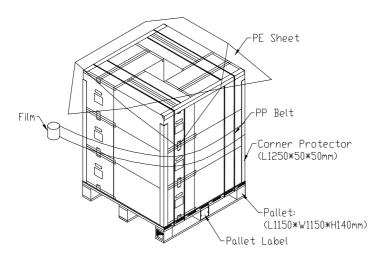


Figure.9-2 Packing method

Tentative

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

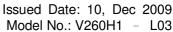
10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 STORAGE PRECAUTIONS

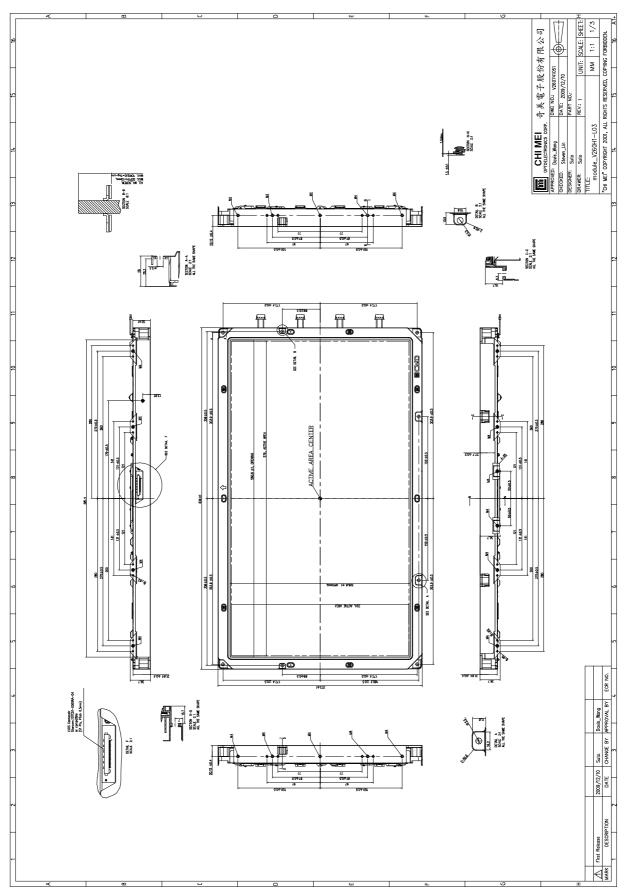
When storing modules as spares for a long time, the following precaution is necessary.

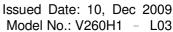
- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (2) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

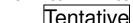

Tentative

11. REGULATORY STANDARDS

11.1 SAFETY


The LCD module should be certified with safety regulations as follows:


- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.



12. MECHANICAL CHARACTERISTICS

