TFT COLOR LCD MODULE

NL6448BC26-27C

21cm (8.4 Type) VGA LVDS interface (1port)

> DATA SHEET = DOD-PP-1408 (2nd edition)

This DATA SHEET is updated document from DOD-PP-1400(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance.

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality. Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 Backlight lamp	10
4.3.3 Power supply voltage ripple	10
4.3.4 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	11
4.4.1 LCD panel signal processing board	11
4.4.2 LED driver board	11
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.5.1 LCD panel signal processing board	
4.5.2 Backlight lamp	13
4.5.3 Positions of plug and socket	13
4.5.4 Connection between receiver and transmitter for LVDS	
4.5.5 Input data mapping 4.6 DISPLAY COLORS AND INPUT DATA SIGNALS	1 /
4.6 DISPLAT COLORS AND INPUT DATA SIGNALS	
4.6.2 16,777,216 colors	10
4.6.3 262,144 colors	
4.7 DISPLAY POSITIONS	
4.8 SCANNING DIRECTIONS	
4.9 INPUT SIGNAL TIMINGS	
4.9 INPOT SIGNAL TIMINOS	
4.9.2 Timing characteristics	22
4.9.3 Input signal timing chart	23
4.10 OPTICS	
4.10.1 Optical characteristics	
4.10.2 Definition of contrast ratio	
4.10.3 Definition of luminance uniformity	
4.10.4 Definition of response times	26
4.10.5 Definition of viewing angles	
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	28
7. PRECAUTIONS	29
7.1 MEANING OF CAUTION SIGNS	29
7.2 CAUTIONS	29
7.3 ATTENTIONS	29
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
8. OUTLINE DRAWINGS	31
8.1 FRONT VIEW	31
8.2 REAR VIEW	32

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL6448BC26-27C is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

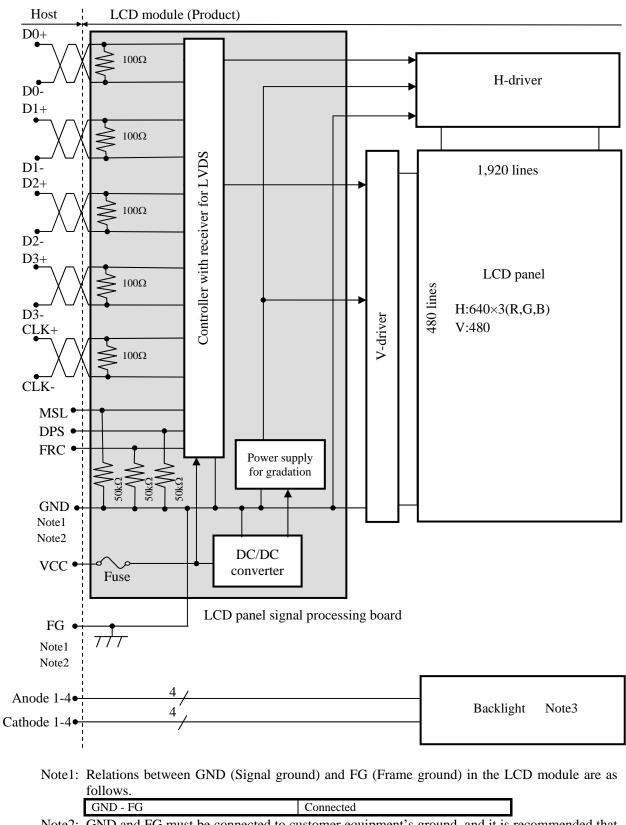
The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

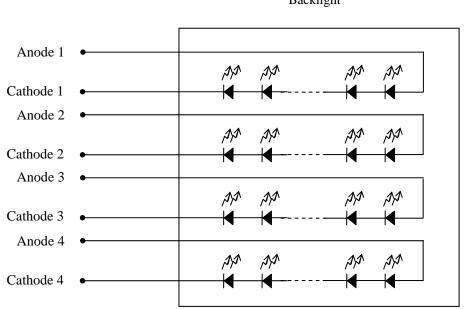
1.2 APPLICATION

• For industrial use


1.3 FEATURES

- Adoption of ST-NLT (Super-Transmissive Natural Light TFT)
- Long life LED backlight type
- High luminance
- High contrast
- Low reflection
- ColorXcell technology (Color Enhancement)
- Wide viewing angle
- Wide temperature range
- LVDS interface
- Reversible-scan direction
- Selectable 8bit or 6bit digital signals for data of RGB
- Replaceable lamp for backlight
- Acquisition product for UL60950-1/CSA C22.2 No.60950-1-03 (File number: E170632)
- Compliant with the European RoHS directive (2002/95/EC)

2. GENERAL SPECIFICATIONS


Display area	170.88 (H) × 128.16 (V) mm					
Diagonal size of display	21cm (8.4inches)					
Drive system	a-Si TFT active matrix					
Display color	16,777,216 colors (At 8-bit input, FRC terminal= High) 262,144 colors (At 6-bit input, FRC terminal= Low or Open)					
Pixel	640 (H) × 480 (V) pixels					
Pixel arrangement	RGB(Red dot, Green dot, Blue dot) vertical stripe					
Dot pitch	$0.089 \text{ (H)} \times 0.267 \text{ (V)} \text{ mm}$					
Pixel pitch	$0.267 (H) \times 0.267 (V) mm$					
Module size	$200.0 \text{ (W)} \times 152.0 \text{ (H)} \times 8.2 \text{ (D) mm (typ.)}$					
Weight	260 g (typ.)					
Contrast ratio	1,000:1 (typ.)					
Viewing angle	 At the contrast ratio ≥ 10:1 Horizontal: Right side 80° (typ.), Left side 80° (typ.) Vertical: Up side 80° (typ.), Down side 80° (typ.) 					
Designed viewing direction	 At DPS= Low or Open: Normal scan Viewing direction without image reversal: Up side (12 o'clock) Viewing direction with contrast peak: Down side (6 o'clock) Viewing angle with optimum grayscale (γ= 2.2): Normal axis (perpendicular) 					
Polarizer surface	Clear+Antireflection(AR)					
Polarizer pencil-hardness	2H (min.) [by JIS K5600]					
Color gamut	At LCD panel center 40% (typ.) [against NTSC color space]					
Response time	$\begin{array}{c} Ton+Toff (10\% \leftrightarrow 90\%) \\ 18ms (typ.) \end{array}$					
Luminance	$At IL = 50mA/One \ circuit$ 900 cd/m ² (typ.)					
Signal system	LVDS 1port (Receiver: THC63LVDF84B, THine Electronics Inc. or equivalent) [8bit/6bit digital signals for data of RGB colors, Dot clock (CLK), Data enable (DE)]					
Power supply voltage	LCD panel signal processing board: 3.3V					
Backlight	LED backlight type: (Replaceable part • Lamp holder set: Type No. 84LHS17 (Recommended LED driver board (Option) • LED driver board :Type No. 104PW03F • Corresponding wiring harness: Type No. 121CBL02					
Power consumption	At IL= 50mA/One circuit, Checkered flag pattern 5.0 W (typ.)					

3. BLOCK DIAGRAM

Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

Note3: Backlight in detail

Backlight

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$200.0 \pm 0.5 \text{ (W)} \times 152.0 \pm 0.5 \text{ (H)} \times 8.2 \pm 0.5 \text{ (D)}$	Note1	mm
Display area	170.88 (H) × 128.16 (V)	Note1	mm
Weight	260 (typ.), 280 (max.)		g

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Paramete	r	Symbol	Rating	Unit	Remarks
Power supply voltage	LCD panel signal processing board		VCC	-0.3 to +4.0	V	
Input voltage for	Di	splay signals Note1	VD		V	-
signals	Fur	nction signals Note2	VF	-0.3 to VCC+0.3	v	
Backlight	Fc	orward current	IL	60	mA	per one circuit
In	cident light ir	itensity	II	150,000	lx	Note3
S	Storage tempe	rature	Tst	-30 to +80	°C	-
Operating temperature		TopF	-30 to +80	°C	Note4	
Operating term	perature	Rear surface	TopR	-30 to +80	°C	Note5
				≤ 95	%	$Ta \le 40^{\circ}C$
				≤ 85	%	$40^{\circ}C < Ta \leq 50^{\circ}C$
	Relative hum Note6	idity	RH	≤ 55	%	$50^{\circ}\mathrm{C} < \mathrm{Ta} \le 60^{\circ}\mathrm{C}$
				≤ 36	%	$60^{\circ}\mathrm{C} < \mathrm{Ta} \le 70^{\circ}\mathrm{C}$
				≤ 24	%	$70^{\circ}C < Ta \le 80^{\circ}C$
	Absolute hum Note6	AH	≤ 70 Note7	g/m ³	-	

Note1: D0+/-, D1+/-, D2+/-, D3+/- and CLK+/-

Note2: DPS, FRC and MSL.

- Note3: If the product surface (polarizer) is exposed to an ultraviolet ray, the polarizer may discolor (Surface treatment may be damaged.). Use a filter to protect the polarizer from the ultraviolet ray.
- Note4: Measured at LCD panel surface (including self-heat)
- Note5: Measured at LCD module's rear shield surface (including self-heat)
- Note6: No condensation
- Note7: Water amount at Ta= 80°C and RH= 24%

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

$(Ta=25^{\circ}C)$								
Parameter		Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltage		VCC	3.0	3.3	3.6	V	-	
Power supply current		ICC	-	250 Note1	370 Note2	mA	at VCC= 3.3V	
Permissible ripple voltage		VRP	-	-	100	mVp-p	for VCC	
Differential input	High	VTH	-	-	+100	mV	at VCM= 1.2V	
threshold voltage	Low	VTL	-100	-	-	mV	Note3	
Terminating resistance		RT	-	100	-	Ω	-	
Input voltage for	High	VFH	0.7VCC	-	VCC	V	CMOS laval	
DPS, FRC and MSL signals	Low	VFL	0	-	0.3VCC	V	CMOS level	
Input current for	High	IFH	-	-	300	μΑ		
DPS, FRC and MSL signals	Low	IFL	-300	-	-	μΑ	-	

Note1: Checkered flag pattern [by EIAJ ED-2522]

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS receiver

4.3.2 Backlight lamp

$(Ta=25^{\circ}C, Note1, Note2, Note3)$							
Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Forward current	IL	-	50.0	55.0	mA	-	
Forward Voltage		18.6	21.0	23.8		Ta= +25°C at IL= 50mA /One circuit	
	VL	17.1	-	-	v	Ta= +80°C at IL= 50mA /One circuit	
	VL	-	-	26.2		Ta= -30°C at IL= 50mA /One circuit	
			-	-	26.4		Ta= -30°C at IL= 55mA /One circuit

Note1: Please drive with constant current.

Note2: The above specifications are for one LED circuit of the backlight.

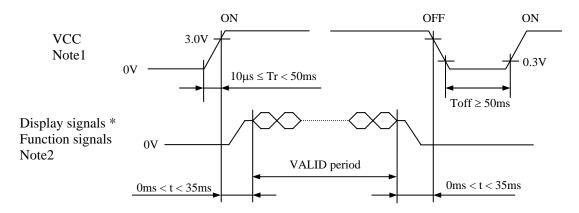
Note3: The Luminance uniformity may be changed depending on the current variation between 4circuits. It is recommended that the current value difference among the circuits be less than 5%.

4.3.3 Power supply voltage ripple

This product works if the ripple voltage levels are over the permissible values as the following table, but there might be noise on the display image.

Power supp	ly voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VCC	3.3V	≤ 100	mVp-p

Note1: The permissible ripple voltage includes spike noise.

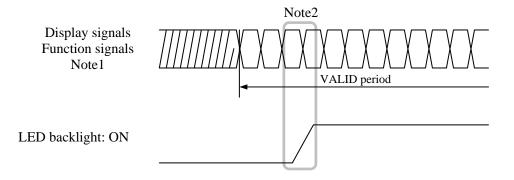

4.3.4 Fuse

Parameter		Fuse	Rating	Fusing current	Remarks	
	Туре	Supplier	Kaung	Fusing current	Kelliarks	
VCC	FCC16202AB	KAMAYA ELECTRIC	2.0A	4.0A	Note1	
vee	FCC10202AB	Co., Ltd.	36V	4.0A	INOLET	

Note1: The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board



* These signals should be measured at the terminal of 100Ω resistance.

- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 3.0V, there is a possibility that a product does not work due to a protection circuit.
- Note2: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CLK+/-) and function signal (DPS, FRC, and MSL) must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

4.4.2 LED driver board

Note1: These are the display and function signals for LCD panel signal processing board.

Note2: The backlight should be turned on within the valid period of display and function signals, in order to avoid unstable data display.

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side):	FI-SE20P-HFE	E (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug:	FI-S20S	(Japan Aviation Electronics Industry Limited (JAE))

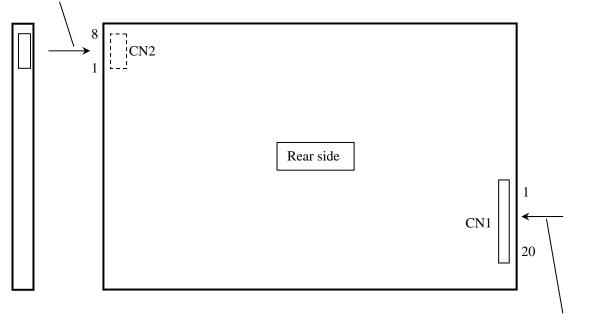
Au	apia	ble plug:		-5205 (Japan)	Aviation Electronics		u (JAL))		
Pin No. Symbol		Symbol	Signal	Input data	signal: 8bit	Input data	Remarks		
	110.	Symoor	Signui	MAP A	MAP B signal:		Remarks		
1	А	D3+	Pixel data	R0-R1,G0-G1,B0-B1 R6-R7,G6-G7,B6-B7		-	Note1, Note2		
	В	GND	Ground		-	Ground	Note3		
2	A	D3-	Pixel data	R0-R1,G0-G1,B0-B1	R6-R7,G6-G7,B6-B7	-	Note1, Note2		
	В	GND	Ground		-	Ground	Note3		
3	3	DPS	Selection of scan direction	0	High :Reverse scanLow or Open :Normal scan				
4	ŀ	FRC	Selection of the number of colors	Hi	gh	Low or Open	Note1 Note5		
5	5	GND	Ground		Ground		Note3		
6	5	CLK+	Pixel clock		Pixel clock		Note2		
7	7	CLK-	I IACI CIUCK		Note2				
8	3	GND	Ground		Note3				
9)	D2+	Pixel data	B4-B7,DE					
1	0	D2-	I IACI UAIA	טע,/ע-דע	DE B2-B5,DE				
1	1	GND	Ground		Ground		Note3		
11	2	D1+	Pixel data	G3-G7,B2-B3	G1-G5,B0		Note2		
1	3	D1-		05-07,02-05	01-03,80	-01	INOIC2		
14	4	GND	Ground		Ground		Note3		
1	5	D0+	Pixel data	R2-R7,G2	D0 D5 C		Note2		
1	6	D0-	ו ואטו עמומ	N2-N/,U2	7,G2 R0-R5,G0				
1	7	GND	Ground	Ground			Note3		
1	8	MSL	Selection of LVDS input map	Low High Low			Note5		
1	9	VCC	Power supply	Dowor overly					
2	0	VCC	rower suppry	Power supply					

Note1: See "4.6 DISPLAY COLORS AND INPUT DATA SIGNALS".

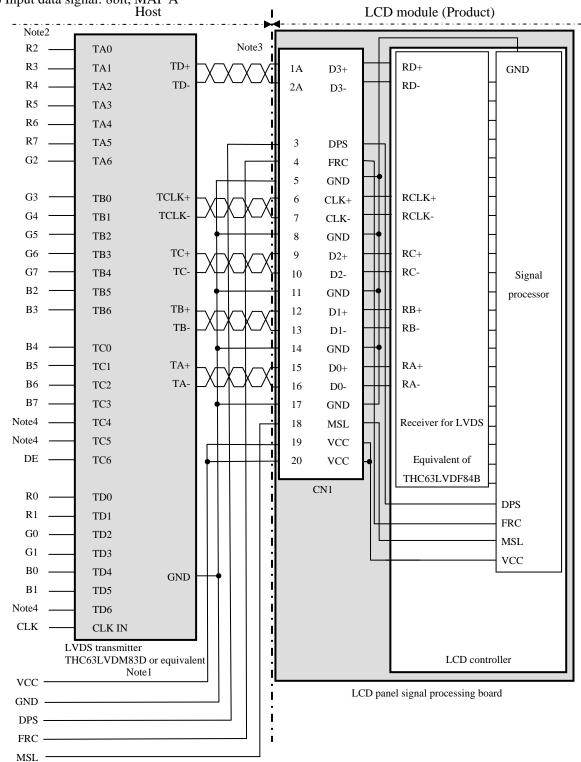
Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note3: All GND and VCC terminals should be used without any non-connected lines.

Note4: See "4.8 SCANNING DIRECTIONS".


Note5: See "4.5.4 Connection between receiver and transmitter for LVDS".

4.5.2 Backlight lamp


CN2 plug Adaptable	(LCD module side): socket:	SM08B-SRSS-TB (J.S.T. SHR-08V-S, SHR-08V-S-B (J.S.T.	Mfg. Co., Ltd.) . Mfg. Co., Ltd.)
Pin No.	Symbol	Signal	Remarks
1	A1	Anode1	-
2	K1	Cathode1	-
3	A2	Anode2	-
4	K2	Cathode2	-
5	A3	Anode3	-
6	K3	Cathode3	-
7	A4	Anode4	-
8	K4	Cathode4	-

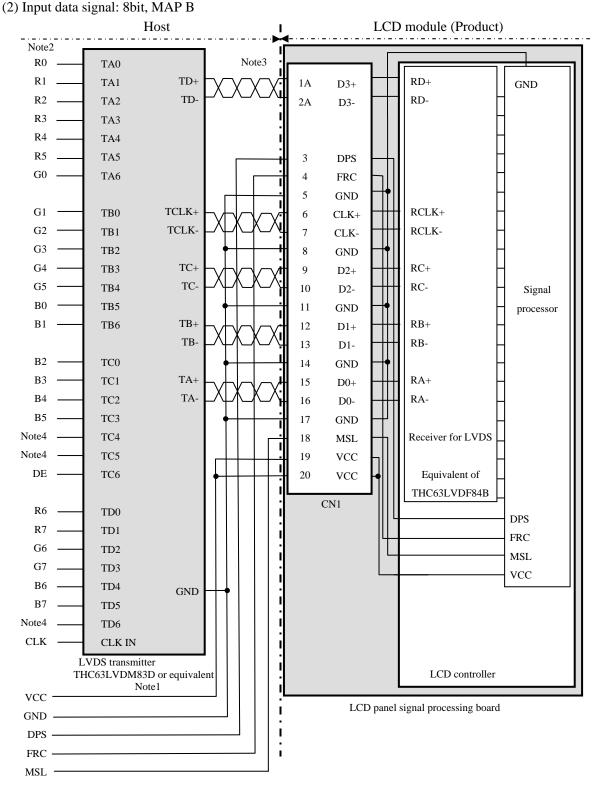
4.5.3 Positions of plug and socket

Insert direction

Insert direction

4.5.4 Connection between receiver and transmitter for LVDS

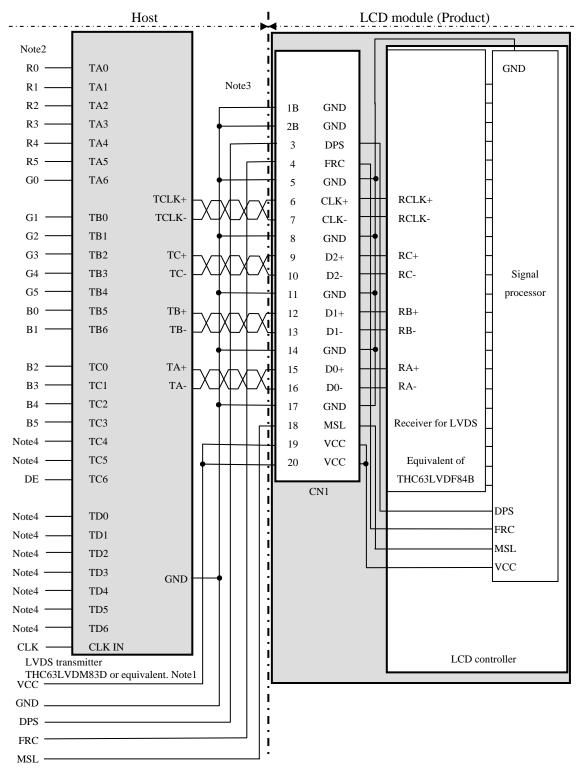
(1) Input data signal: 8bit, MAP A


Note1: Recommended transmitter THC63LVDM83D (THine Electronics Inc.) or equivalent

Note2: LSB (Least Significant Bit) - R0, G0, B0 MSB (Most Significant Bit) - R7, G7, B7

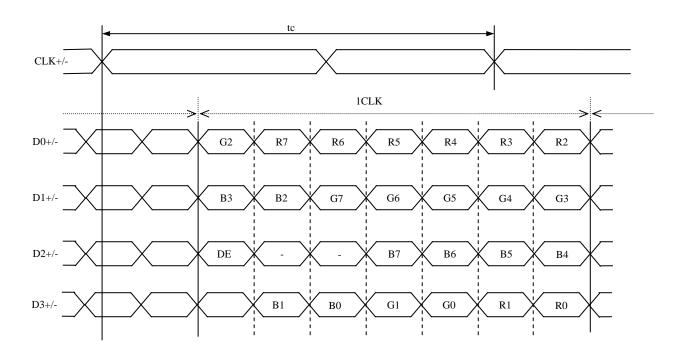
Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

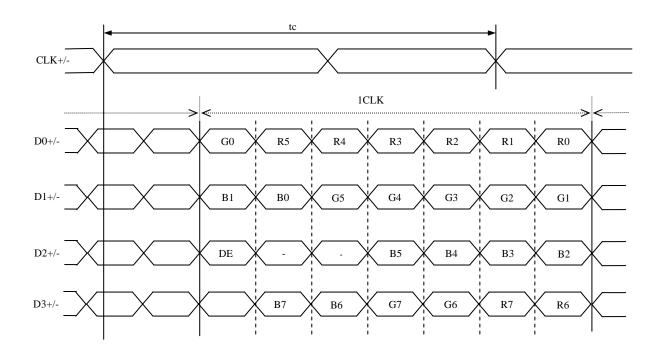
Note4: Input signals to TC4, TC5 and TD6 are not used inside the product, but do not keep TC4, TC5 and TD6 open to avoid noise problem.


NL6448BC26-27C

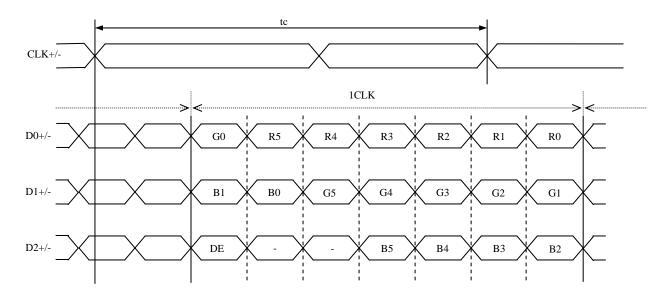
- Note1: Recommended transmitter: THC63LVDM83D (THine Electronics Inc.) or equivalent
- Note2: LSB (Least Significant Bit) R0, G0, B0 MSB (Most Significant Bit) R7, G7, B7
- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TC4, TC5 and TD6 are not used inside the product, but do not keep TC4, TC5 and TD6 open to avoid noise problem.

NL6448BC26-27C


(3) Input data signal: 6bit


- Note1: Recommended transmitter THC63LVDM83D (THine Electronics Inc.) or equivalent
- Note2: LSB (Least Significant Bit) R0, G0, B0 MSB (Most Significant Bit) R5, G5, B5
- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TC4, TC5 and TD0-6 are not used inside the product, but do not keep TC4, TC5, and TD0-6 open to avoid noise problem.

 \mathcal{D}


- 4.5.5 Input data mapping
- (1) Input data signal: 8bit, MAP A

(2) Input data signal: 8bit, MAP B

(3) Input data signal: 6bit

4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

4.6.1 Combinations of input data signals, FRC and MSL signal

This product can display 16,777,216 colors equivalent with 256 gray scales and 262,144 colors with 64 gray scales by combination of input data signals, FRC and MSL signal. See the following table.

Combination	Input data signals	Input Data mapping	CN1- Pin No.1 and 2	FRC terminal	MSL terminal	Display colors	Remarks
1	8 bit	MAP A	D3+/-	High	Low	16,777,216	Note1
2	8 bit	MAP B	D3+/-	High	High	16,777,216	Note1
3	6 bit	-	GND	Low or Open	Low	262,144	Note2

Note1: See "4.6.2 16,777,216 colors".

Note2: See "4.6.3 262,144 colors".

4.6.2 16,777,216 colors

This product can display 16,777,216 colors equivalent with 256 gray scales by combination ① or ②. (See "**4.6.1 Combinations of input data signals, FRC and MSL signal**".) Also the relation between display colors and input data signals is as follows.

Display colors									Dat	a sig	nal	(0: I	Low	leve	el, 1	: Hig	gh le	vel)							
Display	colors	R7	' R6	R5	R4	R3	R2	R1	R0	G	G6	6 G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Col	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
sic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	↑ ,				:	:								:								:			
d gr	\downarrow				:	:								:								:			
Rec	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
y sc	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
gra.	T I													:								:			
Green gray scale	↓ 	0	0	0	0	:	0	0	0	1	1	1	1	:		0	1	0	0	0	0	:	0	0	0
Gre	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
_	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	1	1 0	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	-	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0 0	0	0 0	0 1	1 0																			
. sci	dark ↑	0	0	0	0	. 0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	. 0	0	1	0
Blue gray scale						•																•			
ue £	↓ 1i1-4	0	0	0	0	0	0	0	0	0	0	0	0	: 0	0	0	0	1	1	1	1	1	1	0	1
Bl	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

4.6.3 262,144 colors

This product can display 262,144 colors with 64 gray scales by combination ③. (See "**4.6.1 Combinations of input data signals, FRC and MSL signal**".) Also the relation between display colors and input data signals is as follows.

Display colors		Data signal (0: Low level, 1: High level)																	
Dispiay	colors	R 5	R4	R 3	R 2	R 1	R 0	G5	G4	G3	G2	G1	G0	B 5	B 4	B 3	B 2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Isic	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
B_{δ}	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	1	:					:								:				
d gi	\downarrow				:						:						:		
Red	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
/ sc	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
gray	\uparrow				:			:					:						
Green gray scale	\downarrow	0	0	0	:	0	0				:	0		0	0	0	:	0	0
Gre	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
•	Green	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Blue gray scale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	↑ ↓				•														
ue g	•	0	0	0	: 0	0	0	0	0	0	: 0	0	0	1	1	1	: 1	0	1
Blt	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1 0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Diuc	v	v	0	0	U	U	v	v	0	0	U	U	1	T	1	1	1	1

4.7 DISPLAY POSITIONS

The following table is the coordinates per pixel (See "4.8 SCANNING DIRECTIONS".).

C (0, 0)	В					
$\left(\begin{array}{cc} C(&0,&0) \end{array}\right)$	C(1, 0)	•••	C(X, 0)	•••	C(638, 0)	C(639, 0)
C(0, 1)	C(1, 1)	•••	C(X, 1)	•••	C(638, 1)	C(639, 1)
•	•	٠	•	•	•	•
•	•	• • •	•	• • •	•	•••
C(0, Y)	C(1, Y)	•••	C(X, Y)	•••	C(638, Y)	C(639, Y)
•	•	٠	•	•	•	•
•	•	•••	•	•••	•	•
C(0, 478)	C(1, 478)	•••	C(X, 478)	•••	C(638, 478)	C(639, 478)
C(0, 479)	C(1, 479)	•••	C(X, 479)	•••	C(638, 479)	C(639, 479)

4.8 SCANNING DIRECTIONS

The following figures are seen from a front view.

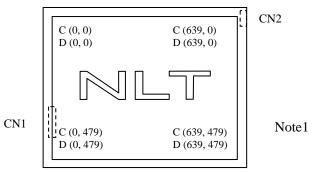


Figure1. Normal scan (DPS: Low or Open)

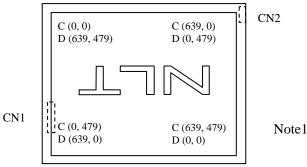
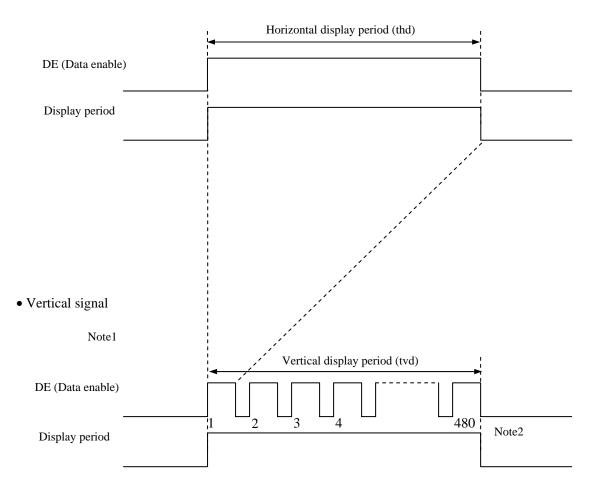


Figure2 . Reverse scan (DPS: High)

Note1: Meaning of C (X, Y) and D (X, Y)


C (X, Y): The coordinates of the display position (See "**4.7 DISPLAY POSITIONS**".) D (X, Y): The data number of input signal for LCD panel signal processing board

4.9 INPUT SIGNAL TIMINGS

4.9.1 Outline of input signal timings

• Horizontal signal

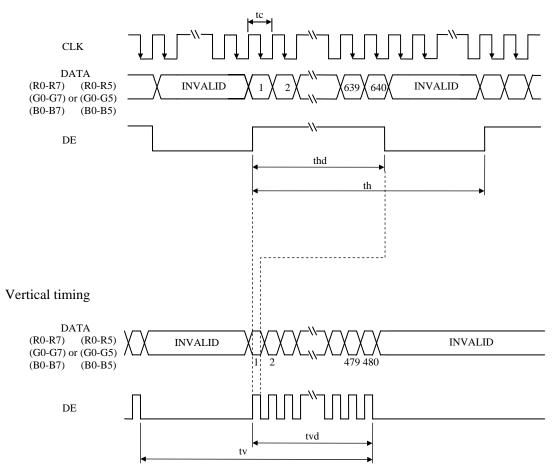
Note1

Note1: This diagram indicates virtual signal for set up to timing. Note2: See "**4.9.3 Input signal timing chart**" for the pulse number.

4.9.2 Timing characteristics

	enaracteristics	,					(Note	e1, Note2, Note3)		
	Parameter		Symbol	min.	typ.	max.	Unit	Remarks		
	Frequency		1/tc	21.0	25.175	29.0	MHz	39.72 ns (typ.)		
CLK	I	Duty	-				-			
	Rise tim	-		-		ns	-			
	CLK-DATA	Setup time	-				ns			
DATA	CLK-DATA	Hold time	-	-			ns	-		
	Rise tim	ne, Fall time	-			ns				
		Cycle	th	30.0	31.778	33.6	μs			
	Horizontal	Cycle	ui	-	800	-	CLK	31.468 kHz (typ.)		
		Display period	thd	640			CLK			
	N (* 1	Cycle	tv	16.1	16.683	17.2	ms			
DE	Vertical (One frame)	Cycle	ťv	-	525	-	Н	59.94 Hz (typ.)		
	(010 11111)	Display period	tvd		480		Н			
	CLK-DE	Setup time	-				ns			
	CER-DE	Hold time	-				ns	-		
	Rise tim	ne, Fall time	-				ns			

Note1: Definition of parameters is as follows.


tc = 1CLK, th = 1H

Note2: See the data sheet of LVDS transmitter.

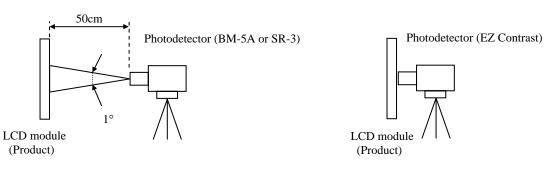
Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

4.9.3 Input signal timing chart

Horizontal timing

4.10 OPTICS

4.10.1 Optical characteristics


							(Note1, 1	Note2)
r	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
e	White at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	L	540	900	-	cd/m ²	BM-5A	-
tio	White/Black at center $\theta R=0^\circ, \ \theta L=0^\circ, \ \theta U=0^\circ, \ \theta D=0^\circ$	CR	600	1,000	-	-	- BM-5A N	
formity	White $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	LU	-	1.25	1.4	-	BM-5A	Note4
White	x coordinate	Wx	0.263	0.313	0.363	-		
winte	y coordinate	Wy	0.279	0.329	0.379	-		
Red	x coordinate	Rx	-	0.559	-	-		
	y coordinate	Ry	-	0.342	-	-		Note5
Green	x coordinate	Gx	-	0.355	-	-	SP-3	
	y coordinate	Gy	-	0.548	-	-	5K-5	
Blue	x coordinate	Bx	-	0.156	-	-		
Diue	y coordinate	By	-	0.125	-	-		
ut	$\theta R = 0^\circ$, $\theta L = 0^\circ$, $\theta U = 0^\circ$, $\theta D = 0^\circ$ at center, against NTSC color space	С	35	40	-	%		
me	White to Black	Ton	-	3	5	ms	BM-5A	Note6
me	Black to White	Toff	-	15	21	ms	DIVI-JA	Note7
Right	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θR	70	80	-	0		
Left	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR \ge 10$	θL	70	80	-	0	EZ	Nota
Up	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θU	70	80	-	0	Contrast	Note8
Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	70	80	-	0		
	e tio formity White Red Green Blue ut ut Right Left Up	eWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ white $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ white $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ white Red \mathbf{x} coordinate \mathbf{y} coordinateRed \mathbf{x} coordinate \mathbf{y} coordinateBlue \mathbf{Blue} \mathbf{x} coordinate \mathbf{y} coordinateut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color space at center, against NTSC color spacemeWhite to Black Black to WhiteRight $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ Left $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	eWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LtioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CRformityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LUWhite 	eWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L540tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR600formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ K0.263White Y coordinateWy0.279Redx coordinateRx-y coordinateRy-Greenx coordinateGy-y coordinateGy-Bluex coordinateBx-y coordinateBy-ut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color spaceC35meWhite to BlackTon-Black to WhiteToff-Right $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR 70Left $\theta U = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 70Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 70	eWhite at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L540900tioWhite/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR6001,000formityWhite $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.25White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU-1.25White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ K0.2630.313White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ Wx0.2630.313Redx coordinateRx-0.559y coordinateRy-0.342Greenx coordinateGx-0.355y coordinateGy-0.548Bluex coordinateBx-0.156y coordinateBy-0.125ut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color spaceC3540meWhite to BlackTon-3Black to WhiteToff-15Right $\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$ θR 7080Left $\theta U = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 7080Up $\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$ θU 7080	e White at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L 540 900 - tio White/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR 600 1,000 - formity White/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 formity White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ Wx 0.263 0.313 0.363 Red x coordinate Rx - 0.559 - Green x coordinate Ry - 0.342 - y coordinate Bx - 0.156 - Blue x coordinate Bx - 0.125 - ut $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta D $	e White at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ L 540 900 - cd/m ² tio White/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ CR 600 1,000 - - formity White/Black at center $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 - formity White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 - White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 - White $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ LU - 1.25 1.4 - Red x coordinate Wx 0.263 0.313 0.363 - K coordinate Rx - 0.559 - - - G reen x coordinate Ry - 0.342 - - B lue x coordinate Bx - 0.156 - - y co	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Note1: These are initial characteristics.

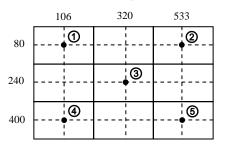
Note2: Measurement conditions are as follows.

Ta= 25°C, VCC= 3.3V, IL= 50mA/One circuit, Display mode: VGA, Horizontal cycle= 1/31.468kHz, Vertical cycle= 1/59.94Hz, DPS= Low or Open: Normal scan

Optical characteristics are measured at luminance saturation 20minutes after the product works, in the dark room. Also measurement methods are as follows.

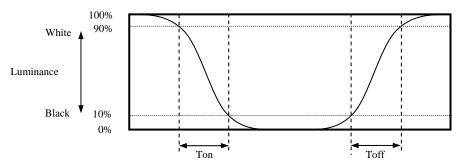
- Note3: See "4.10.2 Definition of contrast ratio".
- Note4: See "4.10.3 Definition of luminance uniformity".
- Note5: These coordinates are found on CIE 1931 chromaticity diagram.
- Note6: Product surface temperature: TopF= 30°C
- Note7: See "4.10.4 Definition of response times".
- Note8: See "4.10.5 Definition of viewing angles".

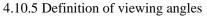
4.10.2 Definition of contrast ratio

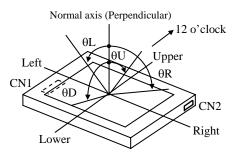

The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) = Luminance of white screen Luminance of black screen

4.10.3 Definition of luminance uniformity


The luminance uniformity is calculated by using following formula.


The luminance is measured at near the 5 points shown below.



4.10.4 Definition of response times

Response time is measured at the time when the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 90% down to 10%. Also Toff is the time when the luminance changes from 10% up to 90% (See the following diagram.).

5. ESTIMATED LUMINANCE LIFETIME

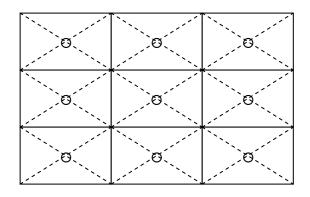
The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED	25°C (Ambient temperature of the product) Continuous operation, IL= 50mA/One circuit	70,000	h
elementary substance	80°C (Surface temperature at screen) Continuous operation, IL= 50mA/One circuit	60,000	h

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.


Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

6. RELIABILITY TESTS

Test item	Condition	Judgment Note1			
High temperature and humidity (Operation)	 60 ± 2°C, RH= 90%, 240hours Display data is black. 				
High temperature (Operation)	 80 ± 3°C, 240hours Display data is black. 				
Heat cycle (Operation)	 -30 ± 3°C1hour 80 ± 3°C1hour 50cycles, 4hours/cycle Display data is black. 				
Thermal shock (Non operation)	 30 ± 3°C30minutes 80 ± 3°C30minutes 2000 100 cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	No display malfunctions			
ESD (Operation)	 150pF, 150Ω, ±10kV 9 places on a panel surface Note2 10 times each places at 1 sec interval 				
Dust (Operation)	 Sample dust: No. 15 (by JIS-Z8901) 15 seconds stir 8 times repeat at 1 hour interval 				
Vibration (Non operation)	 5 to 100Hz, 19.6m/s² 1 minute/cycle X, Y, Z directions 120 times each directions 	No display malfunctions No physical damages			
Mechanical shock (Non operation)	 539m/s², 11ms ±X, ±Y, ±Z directions 5 times each directions 	no physical damages			

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 539m/s² and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6 N (φ16mm jig))

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② When the product is put on the table temporarily, display surface must be placed downward.
- 3 When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ④ The torque for product mounting screws must never exceed 0.294N⋅m. Higher torque might result in distortion of the bezel.
- ⑤ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
- O not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- ⑦ Do not push or pull the interface connectors while the product is working.
- ③ When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- ③ Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- ③ Do not operate in high magnetic field. If not, circuit boards may be broken.
- ④ This product is not designed as radiation hardened.

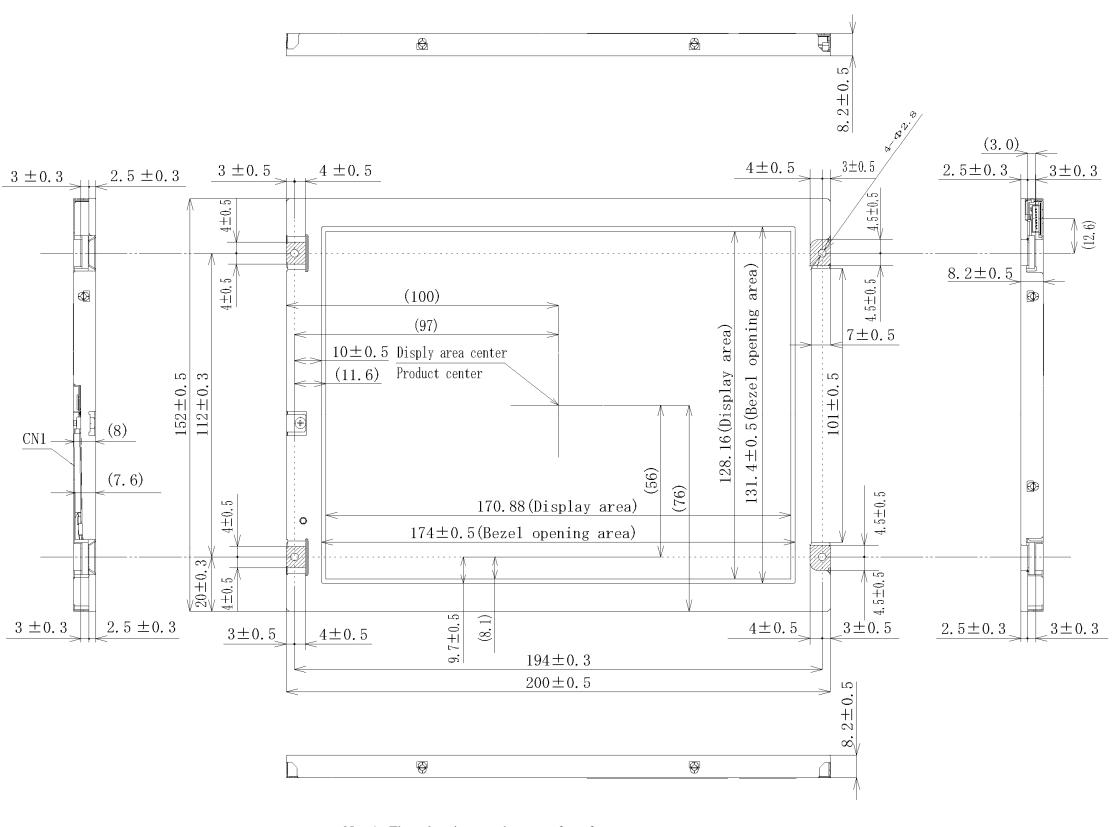
7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Characteristics of the LCD (such as response time, luminance, color uniformity and so on) may be changed depending on ambient temperature. If the product is stored under condition of low temperature for a long time, it may cause display mura. In this case, the product should be operated after enough time being left under condition of operating temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ④ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.
- (6) The product gives AR (antireflection) coating of the polarizer surface. Though AR (antireflection) coating actualizes the low reflection with the multilayer structure, the color of reflection may differ between products and the color change of reflection may occur in the same product by fluctuation of AR (antireflection) coating.

7.3.4 Others

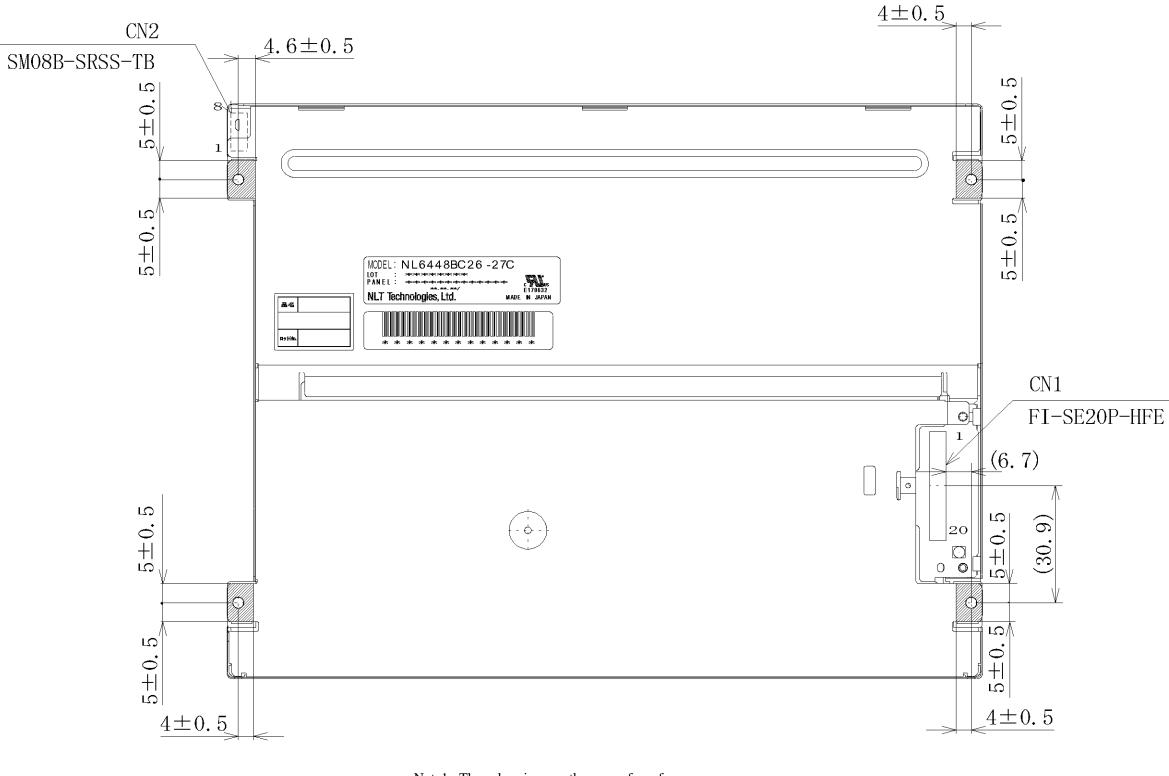
- ① All GND and VCC terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- 3 See "REPLACEMENT MANUAL FOR LAMP HOLDER SET", when replacing lamp holder set .
- ④ Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repairing and so on.
- ⑤ The information of China RoHS directive six hazardous substances or elements in this product is as follows.


	China RoHS directive six hazardous substances or elements									
Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)					
×	0	0	0	0	0					

Note1: O: This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.

 \times : This indicates that the poisonous or harmful material in all the homogeneous materials for this part is above the limitation level of SJ/T11363-2006 standard regulation.

8. OUTLINE DRAWINGS


8.1 FRONT VIEW

Note1: The values in parentheses are for reference. Note2: The torque for product mounting screws must never exceed 0.294N·m. Note3: Mounting hole portions(4 pieces)

Unit: mm

8.2 REAR VIEW

Note1: The values in parentheses are for reference.

Note2: The torque for product mounting screws must never exceed 0.294N·m. Note3: Mounting hole portions(4 pieces)

Unit: mm