

TFT COLOR LCD MODULE

NL8048AC21-01F

20cm (8.0 Type) WVGA LVDS interface (1port)

PRELIMINARY DATA SHEET 🚍

DOD-PP-1858 (3rd edition)

This PRELIMINARY DATA SHEET is updated document from DOD-PP-1765(2).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance.

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality. Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.1 STRUCTURE AND PRINCIPLE	
1.2 FEATURES	
2. GENERAL SPECIFICATIONS	
2. GENERAL SPECIFICATIONS 3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.2 LED driver	
4.3.3 Power supply voltage ripple	0
4.3.4 Fuse	
4.3.4 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE. 4.4.1 LCD panel signal processing board	10
4.4.1 LCD panel signal processing board	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.5 CONNECTIONS AND FONCTIONS FOR INTERFACE PINS	
4.5.2 LED driver	
4.5.3 Positions of plug and socket	
4.5.5 Input data mapping	
4.6 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.0 DISPLAT COLORS AND INPUT DATA SIGNALS	
4.7 DISPLAT POSITIONS	
4.8 SCANNING DIRECTIONS	
4.9 INPOT SIGNAL TIMINOS	
4.9.1 Outline of input signal trinings	
4.9.2 Infining characteristics	
4.10 OPTICS	
4.10 OF ITCS	
4.10.2 Definition of contrast ratio	
4.10.2 Definition of luminance uniformity	
4.10.5 Definition of rummance uniformity	
4.10.4 Definition of viewing angles	
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
8. OUTLINE DRAWINGS	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
	.20
REVISION HISTORY	27

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL8048AC21-01F is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

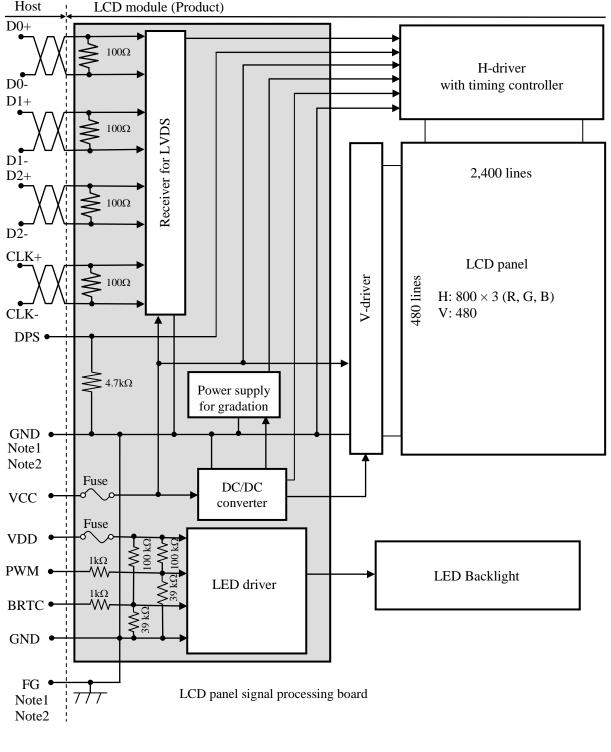
The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• For industrial use

1.3 FEATURES

- High luminance
- High contrast
- Wide viewing angle
- LVDS interface
- Reversible-scan direction
- LED backlight
- Built in LED driver



2. GENERAL SPECIFICATIONS

Display area	$174.0 \text{ (H)} \times 104.4 \text{ (V) mm}$
Diagonal size of display	20cm (8.0 inches)
Drive system	a-Si TFT active matrix
Display color	262,144 colors
Pixel	800 (H) × 480 (V) pixels
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe
Dot pitch	$0.0725 (H) \times 0.2175 (V) mm$
Pixel pitch	0.2175 (H) × 0.2175 (V) mm
Module size	$192.0 (H) \times 122.0 (V) \times (8.9)(D) mm (typ.)$
Weight	(230) g (typ.)
Contrast ratio	800:1 (typ.)
Viewing angle	 At the contrast ratio ≥10:1 Horizontal: Right side 80° (typ.), Left side 80° (typ.) Vertical: Up side 80° (typ.), Down side 80° (typ.)
Designed viewing direction	 At DPS= Low or Open: Normal scan Viewing direction without image reversal: Up side (12 o'clock) Viewing direction with contrast peak: Down side (6 o'clock) Viewing angle with optimum grayscale (γ = 2.2): Normal axis (perpendicular)
Polarizer surface	Antiglare
Polarizer pencil-hardness	3H (min.) [by JIS K5600]
Color gamut	At LCD panel center 70 % (typ.) [against NTSC color space]
Response time	$\begin{array}{c} Ton+Toff (10\% \longleftrightarrow 90\%) \\ (18) \text{ ms (typ.)} \end{array}$
Luminance	At the maximum luminance control 1000 cd/m ² (typ.)
Signal system	LVDS interface (1port) (Receiver: SN65LVDS86AQDGGR, Texas Instruments Inc. or equivalent) 6bit digital signals for data of RGB colors, Dot clock (CLK), Data enable (DE)
Power supply voltage	LCD panel signal processing board: 3.3V LED driver: 12V
Backlight	LED backlight built in LED driver
Power consumption	At the maximum luminance control, Checkered flag pattern (6.0) W (typ.)

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground and LED driver ground) and FG (Frame ground) in the LCD module are as follows.

GND- F	FG		Connected	
	1 - 0			

(

Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

3

3

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$192.0 \pm 0.5 \text{ (W)} \times 122.0 \pm 0.5 \text{ (H)} \times (8.9) \pm 0.5 \text{ (D)}$	Note1	mm
Display area	174.0 (H) × 104.4 (V)	Note1	mm
Weight	(230) (typ.), (250) (max.)		g

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter		Symbol	Rating	Unit	Remarks					
Power supply	LCD panel signal	processing board	VCC	-0.3 to +3.96	N		3				
voltage	LED	lriver	VDD	-0.3 to +15.0	V						
	Display No		VD			Ta= 25°C					
Input voltage for	Functior		VF	-0.3 to VCC+0.3	V	1a= 25°C					
signals			PWM	-0.3 to +5.5	v						
	Function signal	for LED driver	BRTC	-0.3 to VDD+1.0	v		3				
	Storage temperature	Tst	-40 to +80	°C	-	3					
		TopF	-30 to +80	°C	Note3						
Operating	temperature	Rear surface	TopR	-30 to +80	°C	Note4					
				≤ 95	%	$Ta \le 40^{\circ}C$					
				≤ 85	%	$40 < Ta \le 50^{\circ}C$					
	Relative humidity Note5						RH	≤ 55	%	$50 < Ta \le 60^{\circ}C$	
				≤ 36	%	$60 < Ta \le 70^{\circ}C$					
				≤ 24	%	$70 < Ta \le 80^{\circ}C$					
	Absolute humidity Note5		AH	≤ 70 Note6	g/m ³	Ta > 70°C					

Note1: D0+/-, D1+/-, D2+/- and CLK+/-

Note2: DPS

Note3: Measured at LCD panel surface (including self-heat)

Note4: Measured at LCD module's rear shield surface (including self-heat)

Note5: No condensation

Note6: Water amount at Ta= 80°C and RH= 24%

3

NL8048AC21-01F

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

								(Ta= 25°C)	_				
I	Parameter		Symbol	min.	typ.	max.	Unit	Remarks					
Power supply	Power supply voltage		VCC	3.0	3.3	3.6	V	-					
Power suppl	Power supply current Permissible ripple voltage Differential input		wer supply current		pply current		ICC	-	(235) Note1	(330) Note2	mA	at VCC= 3.3V	3
Permissible	ble ripple voltage		VRPC	-	-	100	mVp-p	for VCC					
Differential	fferential input reshold voltage		fferential input		VTH	-	-	+100	mV	at VCM= 1.2 V	1		
threshold vo			VTL	-100	-	-	mV	Note3					
Terminating	resistance		RT	-	100	-	Ω	-					
Input voltage	e for	High	VFH	0.7VCC	-	VCC	V	CMOS level					
DPS signals	Low		VFL	0	-	0.3VCC	v	CINOS level					
Input current	ut current for High		IFH	-	-	-300	μΑ		3				
DPS signal		Low	IFL	-300	-	-	μΑ	-	5				

Note1: Checkered flag pattern [by EIAJ ED-2522]

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS receiver

4.3.2 LED driver

						(Ta= 25°C)	_
	Symbol	min.	typ.	max.	Unit	Remarks	
	VDD	10.8	12.0	13.2	v	Note1	
Note2	IDD	-	(435)	(480) Note3	mA	Note4	3
	VRPD	-	-	200	mVp-p	for VDD	
High	VDFH1	2.0	-	5.3	V		
Low	VDFL1	-	-	0.8	V	_	3
High	VDFH2	2.0	-	VDD	V		
Low	VDFL2	-	-	0.8	V	_	3
	f _{PWM}	100	-	10k	Hz	Note5, Note6	3
	DR _{PWM}	(1)	-	100	%	N-4-7	
	tPWH	(1)	-	-	μs	inote /	3
	High Low High	VDD Note2 IDD VRPD High VDFH1 Low VDFL1 High VDFH2 Low VDFL2 Low DRPWM	VDD 10.8 Note2 IDD - VRPD - - High VDFH1 2.0 Low VDFL1 - High VDFH2 2.0 Low VDFL2 - How DRPWM 100	VDD 10.8 12.0 Note2 IDD - (435) VRPD - - High VDFH1 2.0 - Low VDFL1 - - High VDFH2 2.0 - Low VDFL2 - - Low VDFL2 - - DR M 100 -	VDD 10.8 12.0 13.2 Note2 IDD - (435) (480) Note3 VRPD - - 200 High VDFH1 2.0 - 5.3 Low VDFL1 - - 0.8 High VDFH2 2.0 - VDD Low VDFL2 - 0.8 0.8 High VDFL2 - 0.8 0.8 How VDFL2 - 10.8 0.8 DR MM 100 - 10k	VDD 10.8 12.0 13.2 V Note2 IDD - (435) (480) Note3 mA VRPD - - 200 mVp-p High VDFH1 2.0 - 5.3 V Low VDFL1 - - 0.8 V High VDFL2 - - 0.8 V Low VDFL2 - - 0.8 V High VDFL2 - - 0.8 V Low VDFL2 - - 0.8 V Low DRPM 100 - 10k Hz DRPWM (1) - 100 %	Symbol min. typ. max. Unit Remarks VDD 10.8 12.0 13.2 V Note1 Note2 IDD - (435) (480) Note3 mA Note4 VRPD - - 200 mVp-p for VDD High VDFH1 2.0 - 5.3 V - Low VDFL1 - - 0.8 V - High VDFL2 2.0 - Note5 - - Low VDFH2 2.0 - NOB V - Low VDFL2 - - 0.8 V - Low DR _{PWM} (1) - 100

Note1: When designing of the power supply, take the measures for the prevention of surge voltage.

Note2: The power supply lines (VDD and GND) may have ripple voltage during luminance control of LED. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor between the power supply lines (VDD and GND) to reduce the noise if necessary.

Note3: This value excludes peak current such as overshoot current.

3

Note4: At the maximum luminance control. Note5: A recommended f_{PWM} value is as follows.

$$\mathbf{f}_{\rm PWM} = \frac{2n-1}{4} \times \mathbf{f} \mathbf{v}$$

(n = integer, fv = frame frequency of LCD module)

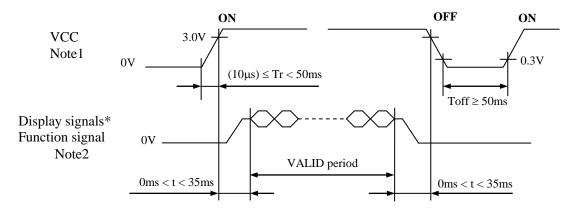
- Note6: Depending on the frequency used, a noise may appear on the screen, please conduct a thorough evaluation.
- Note7: While the BRTC signal is high, do not set the tPWH (PWM pulse width) is less than (1)µs. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by BRTC signal.
- 4.3.3 Power supply voltage ripple

This product works if the ripple voltage levels are over the permissible values as the following table, but there might be noise on the display image.

Power sup	ply voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VCC	3.3V	≤ 100	mVp-p
VDD	12.0V	≤ 200	mVp-p

Note1: The permissible ripple voltage includes spike noise.

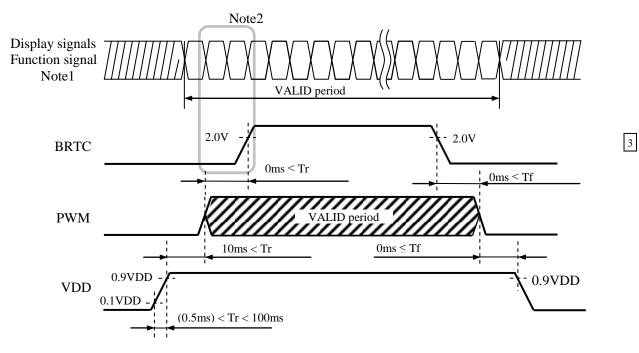
4.3.4 Fuse

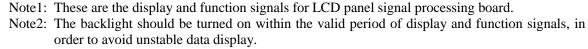

Parameter	Fi	ise	Dating	Fusing ourront	Remarks	
Parameter	Туре	Supplier	Rating	Fusing current	Remarks	
VCC FCC16152AB		KAMAYA ELECTRIC	1.5A	3.0A		
vcc	FCC10132AD	CO.,LTD	36V	5.0A	Note1	
VDD FCC16152AB		KAMAYA ELECTRIC	1.5A	3.0A	Note1	
VDD	FCC10152AB	CO.,LTD	36V	5.0A	I	

Note1: The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board




* These signals should be measured at the terminal of 100Ω resistance.

- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 3.0V, there is a possibility that a product does not work due to a protection circuit.
- Note2: Display signals (D0+/-, D1+/-, D2+/- and CLK+/-) and function signal (DPS) must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

4.4.2 LED driver

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): FI-SE20P-HFE (Japan Aviation Electronics Industry Limited (JAE)) Adaptable plug: FI-S20S (Japan Aviation Electronics Industry Limited (JAE))

· ·	ble plug:	· •	Viation Electronics Industry Limited (JAE))							
Pin No.	Symbol	Signal	Remarks							
1	GND	Ground	Note4							
2	GND									
3	DPS	Selection of scan direction	High:Reverse scanLow or Open:Normal scanNote2							
4	N. C.	-	Keep this pin Open.							
5	GND	Ground	Note4							
6	CLK+	Pixel clock	Note3							
7	CLK-		10005							
8	GND	Ground	Note4							
9	D2+	Pixel data (B2-B5,DE)	Note1, Note3							
10	D2-		10001,10005							
11	GND	Ground	Note4							
12	D1+	Pixel data (G1-G5,B0-B1)	Note1, Note3							
13	D1-		note1, note5							
14	GND	Ground	Note4							
15	D0+	Pixel data (R0-R5,G0)	Note1, Note3							
16	D0-		10101, 110103							
17	GND	Crownd	Note4							
18	GND	Ground	INOTE4							
19	VCC		N / 4							
20	VCC	Power supply	Note4							

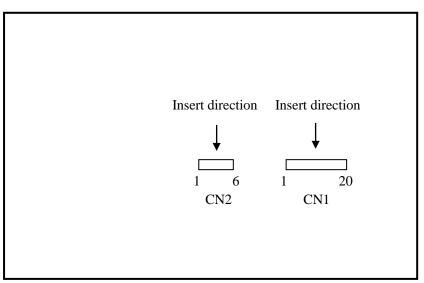
Note1: See "4.6 DISPLAY COLORS AND INPUT DATA SIGNALS".

Note2: See "4.8 SCANNING DIRECTIONS".

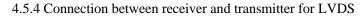
Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

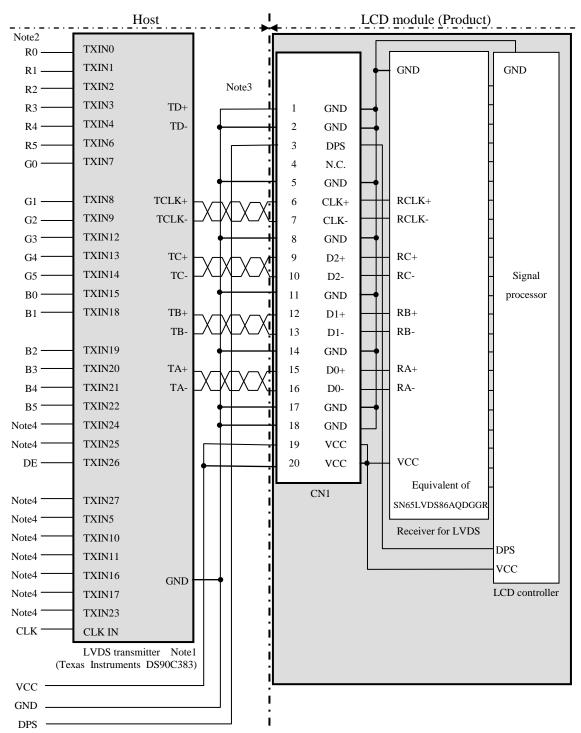
Note4: All GND and VCC terminals should be used without any non-connected lines.

4.5.2 LED driver

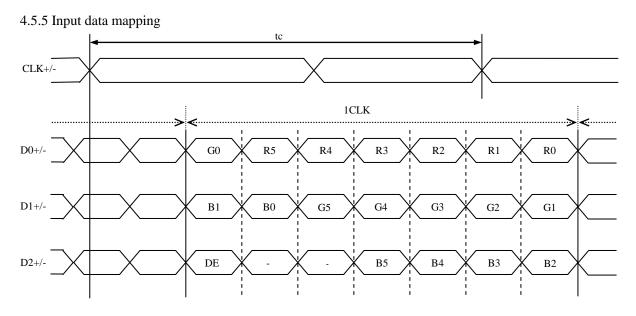

CN2 socket (LCD module side): FI-S6P-HFE (Japan Aviation Electronics Industry Limited (JAE)) Adaptable plug: FI-S6S (Japan Aviation Electronics Industry Limited (JAE))

	r8	~~ (···p						
Pin No.	Symbol	Function	Remarks					
1	VDD	Power supply						
2	VDD	Power supply	Note1					
3	GND	Ground						
4	GND	Ground						
5	BRTC	Backlight ON/OFF control	High or Open: Low:	Backlight ON Backlight OFF				
6	PWM	Luminance control terminal by PWM Dimming	High or Open:	100% (Max. Luminance)				


Note1: All GND and VDD terminals must be connected to appropriate terminals.


4.5.3 Positions of plug and socket

Rear side



- Note1: Recommended transmitter: DS90C383 (Texas Instruments) or equivalent
- Note2: LSB (Least Significant Bit) R0, G0, B0 MSB (Most Significant Bit) R5, G5, B5
- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TXIN24, TXIN25, TXIN27, TXIN5, TXIN10, TXIN11, TXIN16, TXIN17 and TXIN23 are not used inside the product, but do not keep them open to avoid noise problem.

3

4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 262,144 colors in 64 gray scales by combination between input data signals. See following table.

	olay colors	Data signal (0: Low level, 1: High level)																	
Dist		R 5	R 4	R 3	R 2	R 1	R 0	G5	G4	G3	G2	G1	G0	B 5	B4	B 3	B 2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
asic	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
е		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ay					:						:						:		
Red gray scale	\downarrow				:						:						:		
Re	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	D 1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
/ sc	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
gray	↑ 				:												:		
Green gray scale	↓ 	0	0	0	:	0	0	1	1		:	0	1	0	0	0	:	0	0
Gre	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
-	Green	0 0	0	0	0	0 0	0	1	1	1	1	1 1	0	0 0	0	0	0	0	0
		-	0	0	0	-	0	1	1	1	1 0		1	-	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
ale	4. 1	0	0 0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 1	1 0
/ sc:	dark ↑	0	0	0	. 0	U	0	0	U	0	. 0	U	0	U	U	0	. 0	1	0
Blue gray scale	↑ ↓				:						•						:		
lue	bright	0	0	0	. 0	0	0	0	0	0	. 0	0	0	1	1	1	. 1	0	1
Ē	ongin	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

4.7 DISPLAY POSITIONS

The following table is the coordinates per pixel (See "4.8 SCANNING DIRECTIONS".).

C (0, 0)						
R G	В					
]					
$\left(\begin{array}{cc} C(&0,&0) \end{array}\right)$	C(1, 0)		C(X, 0)		C(798, 0)	C(799, 0)
C(0, 1)	C(1, 1)		C(X, 1)	• • •	C(798, 1)	C(799, 1)
•	•	•	•	•	•	
•	•	•	•	•		
C(0, Y)	C(1, Y)		C(X, Y)	• • •	C(798, Y)	C(799, Y)
	•	•	•	•		
•		•				
C(0, 478)	C(1, 478)	•••	C(X, 478)	•••	C(798, 478)	C(799, 478)
C(0, 479)	C(1, 479)		C(X, 479)		C(798, 479)	C(799, 479)

4.8 SCANNING DIRECTIONS

The following figures are seen from a front view.

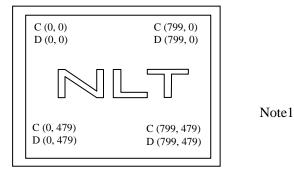
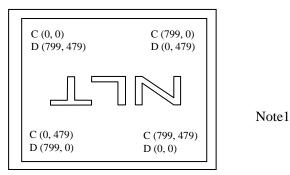
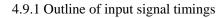


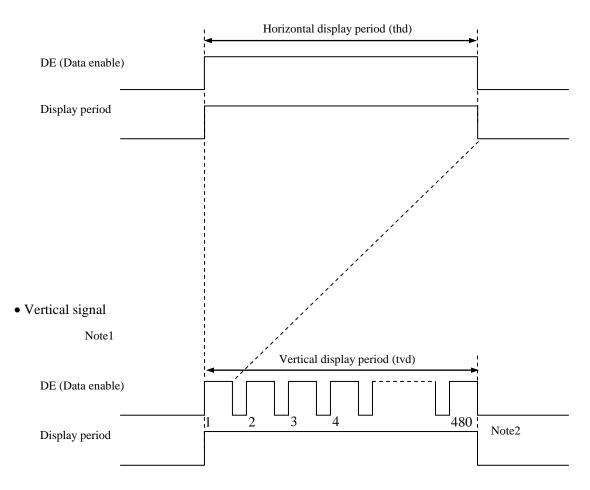
Figure1. Normal scan (DPS: Low or Open)




Figure2. Reverse scan (DPS: High)

Note1: Meaning of C (X, Y) and D (X, Y)

C (X, Y): The coordinates of the display position (See "**4.7 DISPLAY POSITIONS**".) D (X, Y): The data number of input signal for LCD panel signal processing board



4.9 INPUT SIGNAL TIMINGS

• Horizontal signal

Note1

Note1: This diagram indicates virtual signal for set up to timing. Note2: See "**4.9.3 Input signal timing chart**" for the pulse number.

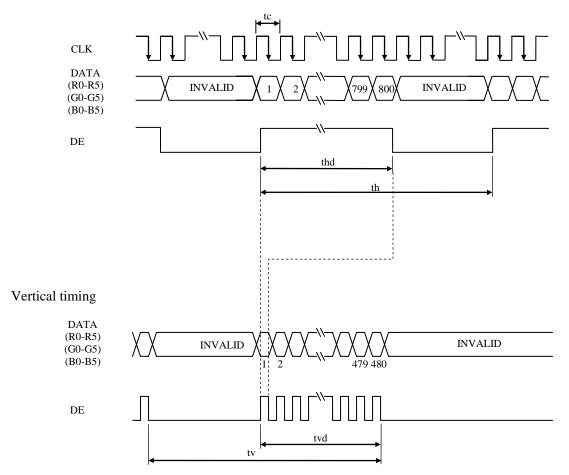
NL8048AC21-01F

4.9.2 Timing characteristics

	characteristics	3					(Note	e1, Note2, Note3)	
	Parameter			min.	typ.	max.	Unit	Remarks	
	Frequency		1/tc	28.0	32.256	36.0	MHz	31.002 ns (typ.)	
CLK		Duty	-				-		
	Rise tii	Rise time, Fall time			-		ns	-	
	CLK-DATA	Setup time	-				ns		
DATA	CLK-DATA	Hold time	-	-			ns	-	
	Rise tii	ne, Fall time	-				ns		
	Horizontal	Cycle	th	28.44	31.746	36.57	μs	31.5 kHz (typ.)	
		Horizontal	Cycle ui	ui	-	1,024	-	CLK	51.5 KHZ (typ.)
		Display period	thd	800		CLK	-		
		Curl		14.931	16.667	19.19	ms		
DE	Vertical (One frame)	Cycle	tv	-	525	-	Н	60.0 Hz (typ.)	
	(0110 1141110)	Display period	tvd	480		Н			
	CLK-DE	Setup time	-				ns		
	ULK-DE	Hold time	-	-			ns	-	
	Rise tii	ne, Fall time	-				ns		

Note1: Definition of parameters is as follows.

tc = 1CLK, th = 1H


Note2: See the data sheet of LVDS transmitter.

Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

4.9.3 Input signal timing chart

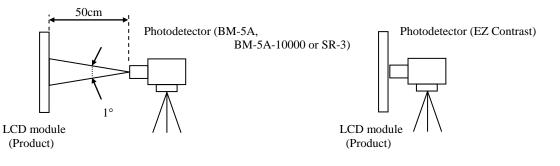
Horizontal timing

NL8048AC21-01F

4.10 OPTICS

4.10.1 Optical characteristics

									Note2)	_
Parameter		Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks	
Luminance		White at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	L	600	1000	-	cd/m ²	BM-5A	-	3
Contrast ratio		White/Black at center $\theta R=0^\circ, \theta L=0^\circ, \theta U=0^\circ, \theta D=0^\circ$	CR	500	800	-	-	BM-5A	Note3	3
Luminance uniformity		White $\theta R=0^\circ, \ \theta L=0^\circ, \ \theta U=0^\circ, \ \theta D=0^\circ$	LU	-	(1.25)	(1.4)	-	BM-5A	Note4	
White	White	x coordinate	Wx	0.263	0.313	0.363	-			
	white	y coordinate	Wy	0.279	0.329	0.379	-		Note5	
	Red	x coordinate	Rx	-	TBD	-	-			
Chromaticity		y coordinate	Ry	-	TBD	-	-			
Chromaticity	Green	x coordinate	Gx	-	TBD	-	-	SR-3		
		y coordinate	Gy	-	TBD	-	-	51-5		
	Blue	x coordinate	Bx	-	TBD	-	-			
	Diue	y coordinate	By	-	TBD	-	-			
Color gam	nut	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ \theta U = 0^{\circ}, \ \theta D = 0^{\circ}$ at center, against NTSC color space	С	65	70	-	%			
Response ti	ima	White to Black	Ton	-	(3)	(5)	ms	BM-5A	Note6	3
Kesponse u	lille	Black to White	Toff	-	(15)	(21)	ms	-10000	Note7	
	Right	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θR	(65)	80	-	0			
X 7 ¹ 1	Left	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR \ge 10$	θL	(65)	80	-	0	EZ	N. (O	
Viewing angle	Up	$\theta R = 0^\circ, \ \theta L = 0^\circ, \ CR \ge 10$	θU	(60)	80	-	0	Contrast	Note8	
	Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	(60)	80	-	0			
Nota1:	Those	re initial characteristics	•	•	•	•		•	•	


Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta = 25°C, VCC = 3.3V, VDD = 12.0V, PWM: Duty 100%,

Display mode: WVGA, Horizontal cycle = 1/31.5kHz, Vertical cycle = 1/60.0Hz, DPS= Low or Open: Normal scan

Optical characteristics are measured at luminance saturation 20minutes after the product works in the dark room. Also measurement methods are as follows.

- Note3: See "4.10.2 Definition of contrast ratio".
- Note4: See "4.10.3 Definition of luminance uniformity".
- Note5: These coordinates are found on CIE 1931 chromaticity diagram.
- Note6: Product surface temperature: $TopF=(34)^{\circ}C$
- Note7: See "4.10.4 Definition of response times".
- Note8: See "4.10.5 Definition of viewing angles".

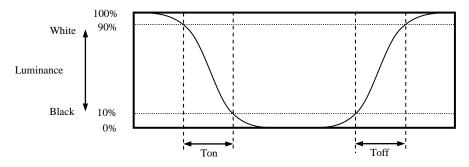
3

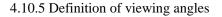
4.10.2 Definition of contrast ratio

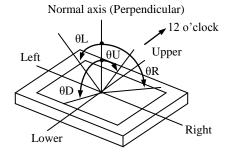
The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) = Luminance of white screen Luminance of black screen

4.10.3 Definition of luminance uniformity


The luminance uniformity is calculated by using following formula.


The luminance is measured at near the 5 points shown below.


	13	33	40	00	66	57
80		0				0
240				3		
400		4				5
-00					1	

4.10.4 Definition of response times

Response time is measured at the time when the luminance changes from " white " to " black ", or " black " to " white " on the same screen point, by photo-detector. Ton is the time when the luminance changes from 90% down to 10%. Also Toff is the time when the luminance changes from 10% up to 90% (See the following diagram.).

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

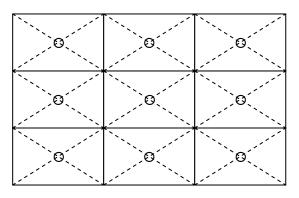
This lifetime is the estimated value, and is not guarantee value.

Condition		Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED elementary substance	25°C (Ambient temperature of the product) Continuous operation, PWM Duty: 100%	100,000	h

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.


3

6. RELIABILITY TESTS

Test item	Condition	Judgment Note1		
High temperature and humidity (Operation)				
High temperature (Operation)	 80 ± 3°C, 240hours Display data is black. 			
Heat cycle (Operation)	 -30 ± 3°C1hour 80 ± 3°C1hour 50cycles, 4 hours/cycle Display data is black. 	No display malfunctions		
Thermal shock (Non operation)	 -40 ± 3°C30minutes 80 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 			
ESD (Operation)	 Contact Discharge ① 150pF, 150Ω, ±10kV ② 9 places on a panel surface Note2 ③ 10 times each places at 1 sec interval 			
Dust (Operation)① Sample dust: No. 15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval				
Vibration (Non operation)① 5 to 100Hz, 19.6m/s² ② 1 minute/cycle ③ X, Y, Z directions ④ 120 times each directions		No display malfunctions No physical damages		
Mechanical shock (Non operation)(1) $539m/s^2$, 11ms (2) $\pm X, \pm Y, \pm Z$ directions (3)(3)5 times each directions		To physical damages		

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and** "7.3 ATTENTIONS"!

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 539m/s² and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6 N (\$\operp16mm fig)\$)

7.3 ATTENTIONS

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② When the product is put on the table temporarily, display surface must be placed downward.
- ③ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (4) The torque for product mounting screws must never exceed 0.230 N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 4.0 mm.
- (5) The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
- O not press or rub on the sensitive product surface. When cleaning the panel surface, wipe it with a soft dry cloth.
- ⑦ Do not push or pull the interface connectors while the product is working.
- ③ When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- ③ Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

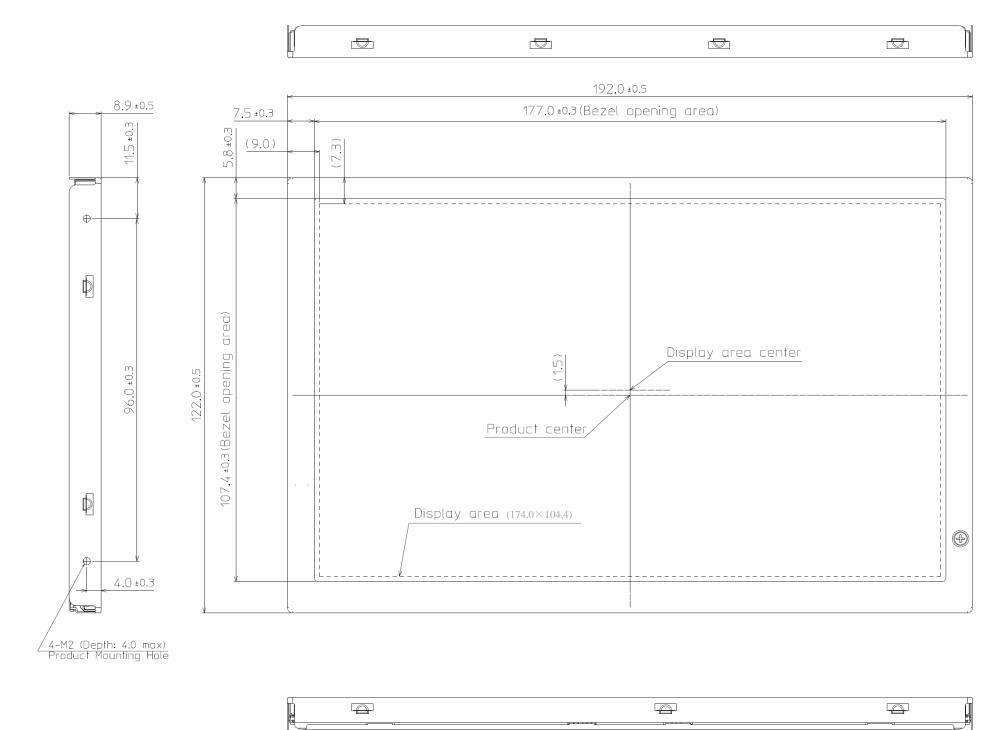
7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- ③ Do not operate in high magnetic field. If not, circuit boards may be broken.
- ④ This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

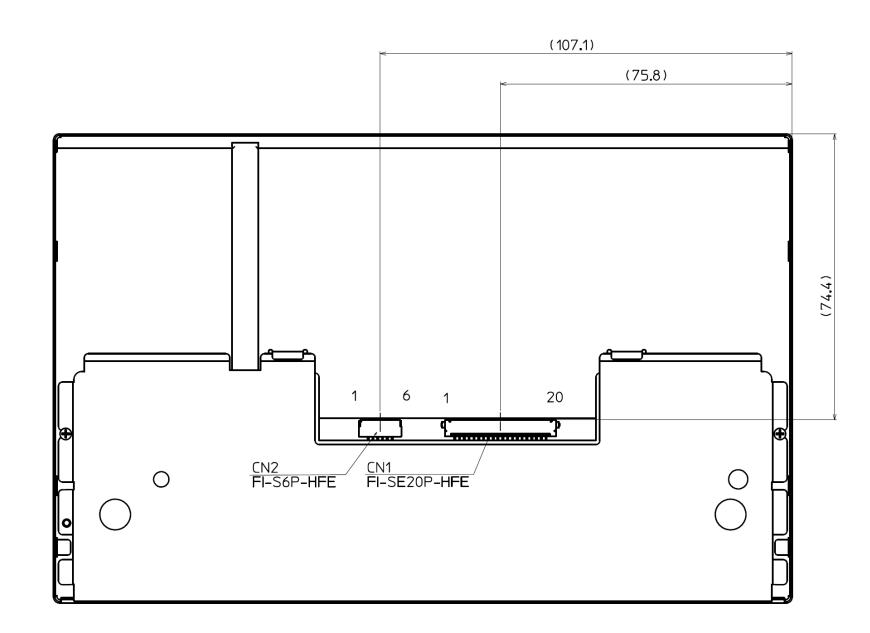
- ① Characteristics of the LCD (such as response time, luminance, color uniformity and so on) may be changed depending on ambient temperature. If the product is stored under condition of low temperature for a long time, it may cause display mura. In this case, the product should be operated after enough time being left under condition of operating temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- (4) The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.


7.3.4 Others

- ① All GND, VCC and VDD terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT.

8. OUTLINE DRAWINGS

8.1 FRONT VIEW


Note1: The values in parentheses are for reference.

Note2: The torque for product mounting screws must never exceed 0.230 N·m. And the length of mounting screws from surface of plate must be ≤ 4.0 mm. Note3: Labels and tapes are not included in the module outline.

Unit: mm

8.2 REAR VIEW

Note1: The values in parentheses are for reference.

Note2: The torque for product mounting screws must never exceed 0.230 N·m. And the length of mounting screws from surface of plate must be ≤ 4.0 mm. Note3: Labels and tapes are not included in the module outline.

Unit: mm

REVISION HISTORY

The inside of latest specifications is revised to the clerical error and the major improvement of previous edition. Only a changed part such as functions, characteristic value and so on that may affect a design of customers, are described especially below.

Edition	Document number	Prepared date	Revision contents and signature
1st edition	DOD-PP- 1692	June 17, 2013	Revision contents New issue Writer
			Approved by Checked by Prepared by R. KAWASHIMA A. KUMANO
2nd edition	DOD-PP- 1765	Sep. 30, 2013	Revision contentsP5 General specifications • Contrast ratio: (600):1 (typ.) \rightarrow (800):1 (typ.)P6 Block diagram • VDD- BRTC: TBD k $\Omega \rightarrow 10 \ k\Omega$ • VDD- PWM: TBD k $\Omega \rightarrow 10 \ k\Omega$ P9 Fuse (Specified)P19 Optics- Optical characteristics • Contrast ratio: (400) (min.) (600) (typ.) \rightarrow (500) (min.) (800) (typ.)P23 Precautions- Attentions • Handling of the product- ④: $\leq 2.0 \ \text{mm} \rightarrow \leq 4.0 \ \text{mm}$ P25 Outline drawing - Front view (Updated) • Note2: $\leq 2.0 \ \text{mm} \rightarrow \leq 4.0 \ \text{mm}$
			P26 Outline drawing - Rear view (Specified) • Note2: $\leq 2.0 \text{ mm} \rightarrow \leq 4.0 \text{ mm}$ Writer Approved by Checked by R. KAWASHIMA
3rd edition	DOD-PP- 1858	Feb. 27, 2014	Revision contents P5 General specifications • Weight: TBD g (typ.) \rightarrow (230) g (typ.) • Contrast ratio: (800):1 (typ.) \rightarrow 800:1 (typ.) • Response time: (25) ms (typ.) \rightarrow (18) ms (typ.) • Signal system - Receiver: TBD \rightarrow SN65LVDS86AQDGGR, Texas Instruments Inc. or equivalent • Power consumption: TBD W (typ.) \rightarrow (6.0) W (typ.) P6 Block diagram • PWM- LED driver: 1k\Omega (addition) • BRTC- LED driver: 1k\Omega (addition) • VDD-BRTC: 10k $\Omega \rightarrow$ 100k Ω • VDD-PWM: 10k $\Omega \rightarrow$ 100k Ω • VDD-PWM: 10k $\Omega \rightarrow$ 100k Ω • RTC- GND: 39k Ω (addition) P7 Mechanical specifications • Weight: TBD g (typ., max.) \rightarrow (230) g (typ.), (250) g (max.) P7 Absolute maximum ratings • Power supply voltage - VCC: -0.3 to +(4.0) V \rightarrow -0.3 to +3.96 V - VDD: -0.3 to +(15) V \rightarrow -0.3 to +15.0 V • Input voltage for signals - Function signal for LED driver - PWM: -0.3 to +(15) V \rightarrow -0.3 to +25.5 V - BRTC: -0.3 to +(15) V \rightarrow -0.3 to +VDD+1.0 V • Storage temperature: -30 to +80 °C \rightarrow -40 to +80 °C • Note6 (addition)

NL8048AC21-01F

REVISION HISTORY

Document number	Prepared date	Revision contents and signature					
		Revision contentsP8 LCD panel signal processing • Power supply current: TBD • Input current for DPS signalP8, 9 LED driver • Power supply current: TBD • Input voltage for PWM sign• Input voltage for BRTC sign • Input voltage for BRTC sign • PWM frequency: (1k) Hz (1 	board (typ., max.) mA \rightarrow (235) (ty - High: (-300) (max.) μ A \rightarrow - Low: (-300) (min.) μ A \rightarrow - Utyp., max.) mA \rightarrow (435) (ty hal - VDFH1: (2.1) V (min.), \rightarrow 2.0 V (min.) - VDFL1: (0.8) V (max.) - mal - VDFH2: (2.1) V (min.) - VDFL2: (0.8) V (max.) - max.) \rightarrow 10k Hz (max.) (min.) \rightarrow (1) μ s (min.) hts) er and transmitter for LVDS \rightarrow SN65LVDS86AQDGGR tics $M^{m^2} \rightarrow 600$ (min.) cd/m ² , (800) (typ.) \rightarrow 500 (min.), 8 (typ., max.) ms \rightarrow (3) (typ.), (typ., max.) ms \rightarrow (15) (typ.) (elimination) opF=(34)°C	p.), (330) (max.) mA -300 (max.) μA 300 (min.) μA p.), (480) (max.) mA VDD (max.)), 5.3V (max.) → 0.8 V (max.) → 2.0 V (min.) → 0.8 V (max.) (00 (typ.) (5) (max.) ms , (21) (max.) ms			
		R. KAWASHIMA		E. YOSHIMURA			
	DOD-PP-	DOD-PP- Feb. 27,	Initial DOD-PP- 1858Feb. 27, 2014Revision contentsP8 LCD panel signal processing • Power supply current: TBD • Input current for DPS signalP8, 9 LED driver • Power supply current: TBD • Input voltage for PWM signP8, 9 LED driver • Power supply current: TBD • Input voltage for BRTC sign • PWM frequency: (1k) Hz (1) • PWM pulse width: TBD µs • Note7: TBDµs \rightarrow (1) µs P10 LED driver • BRTC: (2.1) \rightarrow 2.0V (2poin P13 Connection between receiver • Receiver for LVDS: TBD - P19 Optics - Optical characterist • Luminance: (600) (min.) cd • Contrast ratio: (500) (min.) • Response time - Ton: TBD • Ton+Toff • Note6: TopF=TBD°C \rightarrow TP22 Reliability tests • Thermal shock: ① -30 ± 3Signature of writer Approved by M. Auwhim	InitiationContentsDOD-PP- 1858Feb. 27, 2014Revision contentsP8 LCD panel signal processing board • Power supply current: TBD (typ., max.) mA \rightarrow (235) (ty • Input current for DPS signal - High: (-300) (max.) $\mu A \rightarrow$ - Low: (-300) (min.) $\mu A \rightarrow$ - Low: (-300) (min.) $\mu A \rightarrow$ - P8, 9 LED driver • Power supply current: TBD (typ., max.) mA \rightarrow (435) (ty • Input voltage for PWM signal - VDFH1: (2.1) V (min.), \rightarrow 2.0 V (max.) - • VDFL1: (0.8) V (max.) - • VDFL2: (0.8) V (max.) - • VDFL2: (0.8) V (max.) - • VDFL2: (0.8) V (max.) - • PWM frequency: (1k) Hz (max.) \rightarrow 10k Hz (max.) • PWM frequency: (1k) Hz (max.) \rightarrow 10k Hz (max.) • PWM pulse width: TBD μ s (min.) \rightarrow (1) μ s (min.) • Note7: TBD μ s \rightarrow (1) μ s P10 LED driver • BRTC: (2.1) \rightarrow 2.0V (2points) P13 Connection between receiver and transmitter for LVDS • Receiver for LVDS: TBD \rightarrow SN65LVDS86AQDGGR P19 Optics - Optical characteristics • Luminance: (600) (min.), (800) (typ.) \rightarrow 500 (min.), 8 			