

Specification 97L%-5?B!*

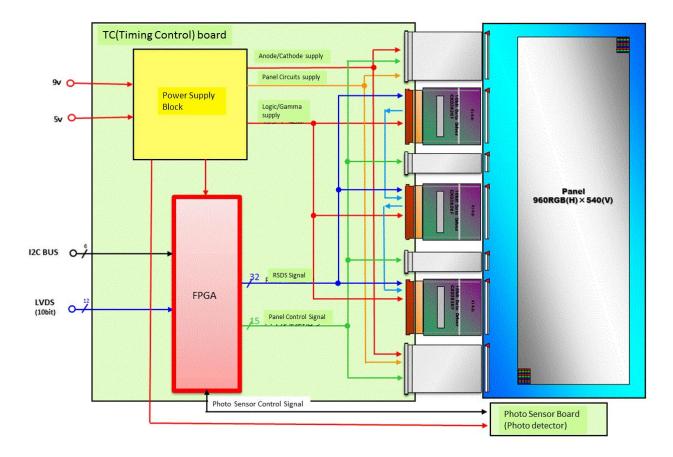
Version: GYdhYa VYf 201(

19.80 cm Color OLED Panel Module

ECX109AKN-6

Description

The ECX109AKN-6 is a 19.80 cm (type 7.4) diagonal, 960 (H) \times 540 (V) dots (518400 effective pixels) active matrix color OLED panel module using low temperature polycrystalline silicon transistors. This panel features high contrast ratio and high luminance. These features are achieved by adopting the microcavity structure and the top emission structure combined with color filters. In addition, an all solid-state structure enables high reliability. This module can realize high luminance, high contrast ratio and wide color range and various adjusted optical characteristics and function by controlling timing controller (Tcon) using I2C.


Features

- Number of effective pixels $960 (H) \times 540 (V)$
- Pixel pitch $171 \ \mu m (H) \times 171 \ \mu m (V)$
- ♦ Surface treatment AR (anti-reflection) coating film
- ♦ Thin and lightweight

Element Structure

- ♦ Number of pixels
- Total number of pixels : 960 (H) \times 540 (V) = 518400
- ♦ Module dimensions : 207.4 mm (H) × 121.0 mm (V) x 12.0 mm (H) (Typ.) , maximum thickness position 14.6 mm

Module Block Diagram

Module specifications

ltem	Specification
Display area	7.4 inch (diagonal 19.80 cm) 164.160 ${ m m}$ (H) × 92.340mm (V)
Package dimensions	207.4 mm (H) × 121.0 mm (V) × 12 mm (14.6 mm maximum thickness)
Pixel pitch	0.171 mm × 0.171 mm
Number of pixels	960 (H) × 540 (V) Quarter Full-HD
Number of gray scales	10 bit, 1,073741,824 colors
Luminance	350 cd/m^2or more (when inputting maximum gray scale)
Power consumption	9.3 W (typ. when displaying all white)
Weight	310 g (typ.)

Display structure	AMOLED top emission
Surface treatment	ARfilm Haze; 2 % Hardness; 2H

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Remarks
	+9 V	14	V	CN101 *1
Supply voltage	+5V	6	V	CN101 *1
I2C control voltage	I2C_SDA, SCL・・・	3.6	V	All control pins in CN105
Operating temperature	Тор	—10 to 55	S	Panel surface temperature *2
Storage temperature	Tst	-30 to 60	S	Ambient temperature
Operating humidity	Нор	10 to 90	%	*3
Storage humidity	Hst	10 to 90	%	*3

*1 25 °C ±5 °C

*2 Specified by the highest temperature on the surface.

Available for fan entrol because the back side temperature of the module assembly can be known via I2C.

*3 No condensation.

Electrical Specifications

Electrical Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Power supply input voltage	V_+9 V	8.0	8.5	9.0	V	
	V_+5 V	4.75	5.0	5.25	V	
Power supply input current	I_+9 V	_	_	0.95	А	*1

	I_+5 V	_	_	0.70	А	
I2C control clock frequency	Clk_I2C	_		100	kHz	*2
I2C control High threshold voltage	I2C_SDA,SCL • • •	2.0		_	V	
I2C control Low threshold voltage	I2C_SDA,SCL • • •	_	_	0.8	V	

*1 FR; 60 Hz, V_+9 V = 8.0 V, V_+5 V = 4.75 V, 25 $^\circ C \pm 5 \,^\circ C$, when displaying all white

*2 All control pins in CN105

Interface Connector Specifications

List of Used Connector

Reference	Description	Manufacturer name/model name
CN100	21-pin connector for LVDS signal input	JAE/ FI-RE-21S-HF or equivalent
CN101	10-pin connector for power supply input	JST/ SM010B-GHS-TB(LF)(SN) or equivalent
CN105	8-pin connector for panel module control	JST/ SM08B-GHS-TB(LF)(SN) or equivalent

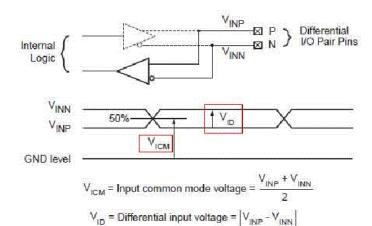
Pin description of each connector

CN100

Pin No.	Symbol	I/O	I/O voltage range	Description
1	GND	_	GND	Panel GND
2	GND	_	GND	
3	GND		GND	
4	RA-	Ι	1.25 V ± 0.175 V (typ.)	LVDS differential signal
5	RA+	Ι	1.25 V ± 0.175 V (typ.)	
6	GND	_	GND	Panel GND
7	RB-	Ι	1.25 V ± 0.175 V (typ.)	LVDS differential signal
8	RB+	Ι	1.25 V ± 0.175 V (typ.)	
9	GND	_	GND	Panel GND

1 0	RC-	I	1.25 V ± 0.175 V (typ.)	LVDS differential signal
11	RC+	I	1.25 V ± 0.175 V (typ.)	
1 2	GND		GND	Panel GND
1 3	RCLK-	-	1.25 V ± 0.175 V (typ.)	LVDS differential signal
14	RCLK+	-	1.25 V ± 0.175 V (typ.)	
1 5	GND	Ι	GND	Panel GND
16	RD-	-	1.25 V ± 0.175 V (typ.)	LVDS differential signal
17	RD+	-	1.25 V ± 0.175 V (typ.)	
18	GND	Ι	GND	Panel GND
19	RE-	I	1.25 V±0.175 V (typ.)	LVDS differential signal
2 0	RE+	I	1.25 V±0.175 V (typ.)	
2 1	GND	_	GND	Panel GND

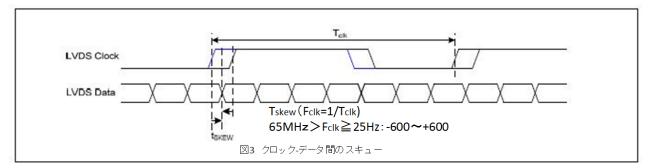
CN101


Pin No.	Symbol	I/O	I/O voltage range	Description
1	+9 V	I	+8.5 V (typ.)	Panel power supply
2	+9 V	I	+8.5 V (typ.)	
3	+9 V	I	+8.5 V (typ.)	
4	GND	_	GND	Panel GND
5	GND		GND	
6	GND		GND	
7	GND		GND	
8	5V	I	+5.0 V (typ.)	Panel power supply
9	5V	I	+5.0 V (typ.)	
1 0	5V	I	+5.0 V (typ.)	

CN105

Pin No.	Symbol	I/O	I/O voltage range	Description
1	I2C_SDA	I/O	0 V to -3.3 V	I2C bus SDA signal
2	I2C_SCL	I	0 V to -3.3 V	I2C bus SCL signal
3	GND	_	GND	Panel GND
4	READY	0	0 V to -3.3 V	READY output signal of panel CPU
5	CONTROL_MODE	I	0 V to -3.3 V	Normally connected to GND
6	RECONFIG	I	0 V to -3.3 V	Restartup control signal of panel CPU
7	GND	_	GND	Panel GND
8	RESERVE			Not available

* CN102 and CN104 on the board are not used.


LVDS input specifications Differential I/O Standards

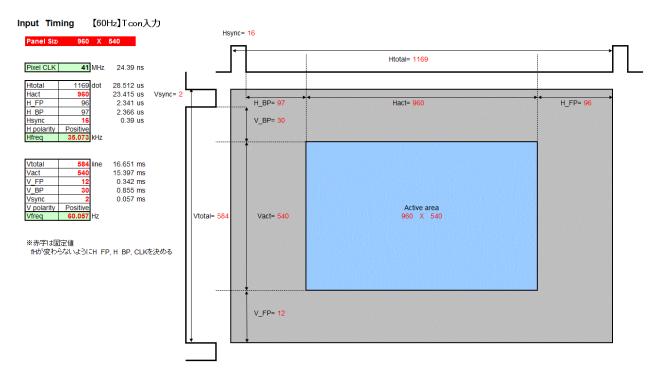
Recommended operating setting condition of differential signal

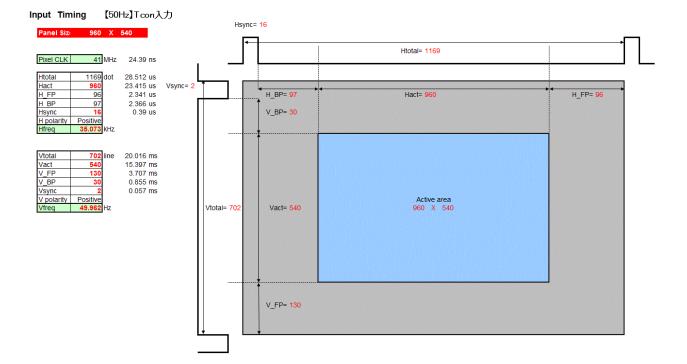
IO Standard Attribute	VCCO for Drivers			VID			VICM		
	Min. (V)	Nom. (V)	Max. (V)	Min. (mV)	Nom. (mV)	Max. (mV)	Min. (V)	Nom. (V)	Max. (V)
LVDS_33	3.0	3.3	3.6	100	350	600	0.3	1.25	2.35

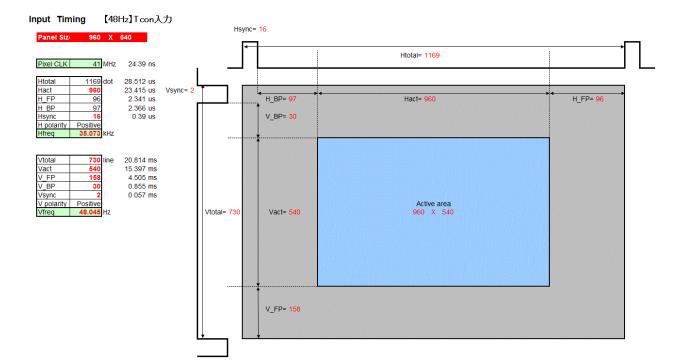
Skew between LVDS clock and data

Item	Symbol	Min.	Max.	Unit	Remarks
LVDS Clock to Data Skew Margin	tskew	-600	+600	ps	65 MHz>Fclk≥25 MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	tskew_EO	-1/7	+1/7	Tclk	
Maximum deviation Of input clock frequency during SSC	FDEV		±3	%	
Maximum modulation frequency of input clock during SSC	FMOD	_	200	kHz	

Input Signal Timing

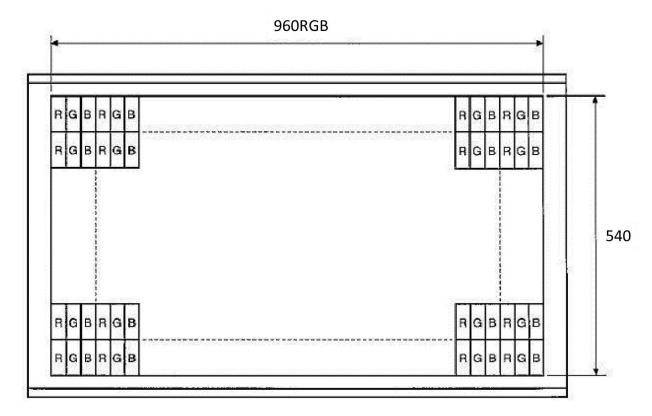

Speci	fication	Minimum	Typical	Max	Unit
Clock	Pixel Clock		41		MHz
	Htotal	-	1169	-	
	Hact	-	960	-	
	H_FP		96		dot clk
Horizontal	H_BP	-	97	-	
	Hsync	-	16	-	
	H polarity		Positive		
	Hfreq	34.547	35.073	35.599	kHz
	Vtotal	-	584/702/730	-	
	Vact	-	540	-	
	V_FP		12/130/158		line
Vertical	V_BP	-	30	-	line
	Vsync	-	2	-	
	V polarity		Positive		
	Vfreq	-1.5%	60.057/49.962/48.045	+1.5%	Hz

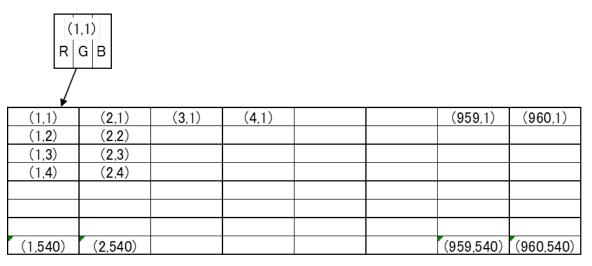

See the timing table on the next page onward.


* When SYNC_MODE is in HVsync mode.

* Change also the register needed to drive it using I2C when changing vertical frequency.

Input Signal Timing


Display Gray Scale and Input Data Signal


$\overline{\ }$	Input				Red	Data	ĺ						Gree	n Dat	a						Blue	Data	i		
	$\overline{}$	R9	R8	R7		R3	R2	R1	R0	G9	G8	G7		G3	G2	GI	G0	B9	B8	B7		B3	B2	B1	BO
Color	\sim	MSB	1				ARES		LSB	MSB	1				. 48. 	Antonio	LSB	MSE	3	n					LSE
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ł	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	••	:	•	:
	:	:		:	:	:	:	•	:	:	:	:	:	:	:	:		:	:	••	••	:	:		:
	Rcd (1022)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	1	:		1	:	:		:	ः	:	:	:	:		
	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:		:	;	:	:	:
	Green (1022)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
-1	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	·	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:		•	:	•	:	:	:
	· · · ·	:	:	:	:	:	:	:	:	:	:	:,	:	;	:	:	;	:	;	:	:	:		:	:
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

 \ast 1 shows High, and 0 shows Low.

* For gray scale (n), the larger n is the brighter the color is.

Pixel data array in display area

LVDS mapping

LVDS data	Pixel	Input connector
	data	Input connector
TA0	R4	
TA1	R5	
TA2	R6	RA-
TA3	R7	- RA+
TA4	R8	
TA5	R9	
TA6	G4	
TB0	G5	
TB1	G6	
TB2	G7	RB-
TB3	G8	- RB+
TB4	G9	NDT
TB5	B4	
TB6	B5	
TC0	B6	
TC1	B7	
TC2	B8	DC.
TC3	B9	RC- RC+
TC4	HSYNC	KC+
TC5	VSYNC	
TC6	DE	
TD0	R2	
TD1	R3	
TD2	G2	
TD3	G3	RD-
TD4	B2	RD+
TD5	B3	
TD6	-	
TE0	R0	
TE1	R1	
TE2	G0	DE
TE3	G1	RE-
TE4	B0	RE+
TE5	B1	
TE6	-	7
CLK	CLK	RCLK- RCLK+

Power Supply Sequence

Power-on Sequence (I2C control)

POWER ON Sequence

1	Set Panel +5V	
	+1.2V (DD Converter OUT)	
	+3.3V (DD Converter OUT)	
2	Set -> Panel +9V	Should be High between +5V ON and "PANEL ON".
	DONE signal in Panel Module (FPGA)	Around 350ms CPU Function Start
	Reset Signal in Panel Module	
3	Set 🔶 Panel READY (CPU)	
4	Set Panel Parameter Setting (I2C) (Signal Format, Color temp etc)	
5	Set - Panel LVDS Signal Output	LVDS LVDS
6	Set Panel PANEL_ON (I2C)	PANEL OFF ++ 100ms ji.L: PANEL ON PANEL OFF PANEL ON
Ø	Set Panel CONTROL_MODE	L Pull-up to +3.3V by 10k Ω Pull-up Register
8	Set - Panel RECONFIG (CPU Re-start)	

Control Step

 Jointon Step

 1) Spin of CN105(CONTROL_MODE) to be 0[V]. ---- ⑦

 Grounding by set side.

 2) Power supply to panele module. ---- ⑦②

 Power supply sequence is, at first +5V and +9V later. Otherwise, at the same timing for both +5V and +9V.

 3) Wait until when receiving READY signal from Panel Module.----- ③

 4) Writing initial register value for panel parameter via I2C interface. ----- ④

 5) LVDS Signal Output. -----⑤

 6) Panel ON. ------⑤

 7) Jif panel module don't work correctly, it is available to re-start CPU with plus pulse to 6pin of CNI05(RECONFIG).

<u>CPU Re-start</u> It is available to re-start CPU with plus pulse to 6pin of CN105(RECONFIG). — (3) After CPU Re-start, please proceed Step 3) onward.

RECONFIG Function

POWER OFF Sequence

+5V Set 🔿 Panel +1.2V (DD Converter OUT) +3.3V (DD Converter OUT) Set 🔿 Panel +9V PANEL Set 🔿 Panel PANEL OFF PANEL_ON (I2C) ON FPGA POWER OFF Sequence POWER OFF Sequence (Around 80ms) (RSDS OFF, Panel Power OFF)

Control Step

1) In case that panel power off timing can be controlled. Step1) "Panel Off" by I2C interface and stay around 80msec. Step2) Power supply off, +5V and +9V.

2) In case that panel power off timing can NOT be controlled. Highly recommend that power off with +9V at first, and then power off +5V later.

In case for panel power off timing can be controlled by I2C interface.

Panel Control Method (I2C)

Changing the setting below via I2C enables the panel characteristics control.

Register Table and the Function

Name	Function	Bit	R/W	Address					sign				Default	Description	Register has to be set at initial setting
Indille	T direttori	Dit	10/11	Address	7	6	5	4	3 2	2	1	0	Delault	Description	° °
PANEL_ON	Panel ON/OFF control.	1	R/W	10h								0	0	[0] Panel off [1] Panel on	Needed to execute when Panel On and Off.
MUTE	Muting Display.	1	R/W	11h								0	0	[0] Normal display [1] Mute	
V_FREQ	Vertical scan frequency setting	2	R/W	12h							1	0	0	[0] 60Hz [1] 50Hz [2] 48Hz [3] Reserved	Needed to select one frequency.
COLOR_SPACE	Color Space Setting	3	R/W	13h					2	2	1	0	0	[0] Panel native [1] EBU [2] SMPTE-C [3] ITU-R.BT709 [4]-[7] Reserved	Needed to select one color setting.
COLOR_TEMP	Color Temperature Setting	3	R/W	14h					2	2	1	0	0	[0] D65 [1] D93 [2] Panel native [3]-[7] Reserved	Needed to select one Color Temperate
SYNC_MODE	SYNC MODE setting.	1	R/W	16h								0	0	[0] DE only mode[Test purpose only] [1] HVsync mode	Please select [1].
T_B_REVERSE	Reverce display, top and bottom.	1	R/W									0	0	Top/Bottom reverse [0] Normal [1] Reverse	Needed to select one.
L_R_REVERSE	Reverce display, right and left.	1	R/W	17h							0		0	Left/Right reverse [0] Normal [1] Reverse	Needed to select one.
PANEL_TEMP	Make sure panel	9	R	1Ah	7	6	5	4	3 2	2	1	0		Panel temperature 0.5 degree C/1LSB (2's complement) 0FAh : +125 degree C	
	temperature.			1Bh								8		000h : 0 degree C 192h : -55 degree C	
OPERATION_TIME	Make sure OperationTime	16	R	46h 47h	7 15		5 13		3 2 11 1			0 8		Operation time	
SG_PATTERN	Display with internal display image.	4	R/W	4Eh	3	2	1	0					0	Test pattern [0] External signal (LVDS input) [1] 100% White [2] 100% Red [3] 100% Green [4] 100% Blue [5] 100% ColorBar [6] H Ramp [7] V Ramp [8] Frame [9] Window [10] 80% Gray [11] 60% Gray [12] 40% Gray [13] 20% Gray	

Notes on changing I2C setting)

• Noise or image disturbance in the display area may be seen when setting the register below.

Internal signal display (during signal switching)/panel color range setting/panel color temperature setting/reversed display in

up-down direction/reversed display in right-left direction

• SYNC_MODE is set to "0" in the initial setting. Use it under the condition that Hvsync mode is set to "1". When not setting it Sony does not guarantee the normal operation.

I2C Communication Specification

Packet Specification

Write-packet (BE Micro -> Panel Micro)

The packet length is variable and the start subaddress can be set freely. The configuration is shown below.

Start Slave Address(W) ACK	Sub Address ACK Data1 ACK •••	DataN	ACK STOP
Slave Address(W)	60h		
Sub Address	The first address to write (1 Byte)		
Data1~DataN	Writing data (Maximum "N" is 15.)		
ACK	Acknowledgement		

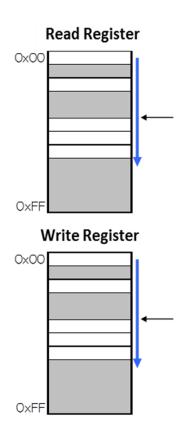
Read-packet (Panel Micro -> BE Micro)

The packet length is variable and the start subaddress can be set freely. The configuration is shown below.

Start Slav	e address(W) ACK	Sub Address	ACK S	Start	Slave address (R)	ACK	Data1	ACK	
_	DataN	NAK STOP							

Slave Address(W)	60h
Sub Address	The first address to read (1 Byte)
Slave Address(R)	61h
Data1~DataN	Reading data
ACK	Acknowledgement
NAK	No Acknowledgement

Time interval between packets

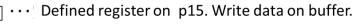

The interval between the end of command packet and the start of the following command packet

(start condition) should be 500 µs or more.

Processing when accessing undefined area

The processing when accessing undefined area is shown below.

Reading data regulation



··· Defined register on p15. Read data on buffer.

... Not defined register on p15. Ignore and no read.

In case accessing in serial for both Defined and Not defined register, Reading data regulation is valid for each register, regardless of starting register.

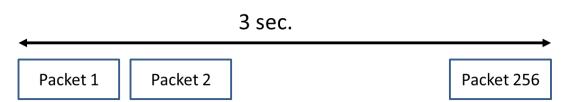
Writing data regulation

Not defined register on p15. Write just Zero.

In case accessing in serial for both Defined and Not defined register, Writing data regulation is valid for each register, regardless of starting register.

Timeout

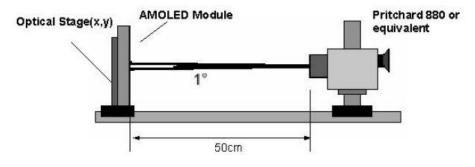
The communication becomes invalid to release all path if the communication does not end (path is still busy) even 500 ms after the time when the last slave address is designated for fail safe.


(The I2C device is reset internally.)

Therefore, end all communication within 500 ms after the last slave address is designated to issue the STOP condition.

Restriction on number of commands in 3 second units

The number of write commands should be 256 or less in any 3 second width.


Remarks: The number of read commands has no restriction due to no queuing.

Optical characteristics

It is measured in the optical system shown below using the optical measurement unit equivalent

to CS2000 after the aging of 20 min in darkroom. The drive condition of OLED panel is shown below.

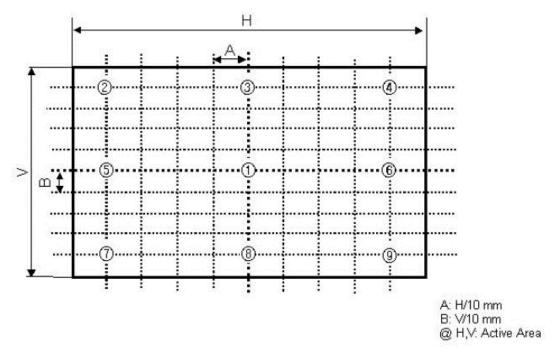
<Panel drive condition>

Ta = 25 \pm 2 deg.C, V9v = 8.5 V, V5v = 5 V, fv = 60 Hz

Color temp = D65, Color Space

= panel native setting

Before shipping


Item		Min.	Тур.	Max.	Unit	Remarks
Luminance	All white	200		250	cd/m^2	*1
	Peak Iuminance	350				

Luminanceuni	formity	9 points	80%				*2
Contrast		Center		100,000		-	*3
Chromaticity	W	x	-0.010	0.313	+0.010	-	*4
		у		0.329		-	
	R	x	0.673	0.681	0.689	-	*5
		у	0.311	0.319	0.327	-	
	G	x	0.17	0.206	0.242	-	
		у	0.718	0.735	0.752	-	
	В	x	0.13	0.135	0.14	-	
		у	0.05	0.062	0.074	-	

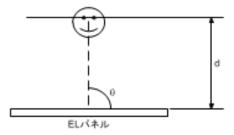
*1 When displaying gray scale of 1023 ABL is ON during Window.

*2 Calculated by the measurement value on the 9 points in the active area below based on the formula below.

Luminance UF = Min. (L1, L2, L3 $\cdot \cdot \cdot$ L9)/Max. (L1, L2, L3 $\cdot \cdot \cdot$ L9)

*3 Calculated by the formula below.

Contrast = Luminance displaying Window in 1023 gray scale/Luminance displaying Window in 0 gray scale


*4 At default value of D65 in the color temperature setting

*5 At default value of Panel Native in the color range setting

Defect Standards

1. Visual Inspection Conditions

The defect of EL panel is inspected visually under the condition below if not any proviso in the respective items.

Inspection Environment and Conditions

Parameter	Conditions				
d	3 V (3 times the on-screen vertical dimension)				
Panel luminance	0 to 200 cd/m^2				
Ambient temperature	25 deg.C (typ.)				
Ambient illuminance	100 lx (When lighted) 1100 to 1500 lx (When not lighted)				
θ	90 ±5 deg.				

2. Defect Standards

2-1. Pixel and Circuit Defects

Item	Total	Distance between adjacent defects	
Bright spot	0		Evaluate at an ambient illuminance of 10 lx or less.
Dark spot	See "2-3. Dark Spot Standard".	Applied according to color.	Evaluated at 200 cd/m^2.
Line defect	0		

2-2. Bright dot defect specification

Bright dot defect is specified with detection threshold values. Pixels that having brighter luminance than these threshold levels on each gray level are judged to be bright dot defect. Bright dot defect has brighter luminance relative to the normal dot luminance. The definition is not same as that of LCD (Liquid Crystal Display), please pay attention.

Bright Defect threshold ; Red = 180 %, Green = 150 %, Blue = 200 %

Pixels that simultaneously satisfy the following conditions should be ignored.

• Luminance level: R, G, B 0.8 cd/m² or less

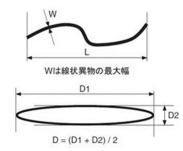
- ◆ Number of pixels: Unlimited
- Inspection picture: All black display

2-3. Dark dot defect specification.

Dark spot defect is specified with threshold values. Pixels that having lower luminance than these threshold values on each gray level are judged to be dark dot defect. Dark dot defect having low luminance than that of normal pixel.

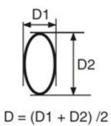
Dark dot defect threshold : Red = 40 %, Green = 60 %, Blue = 30 %

Allowable number of dark dot defects.


On active display area, should simultaneously satisfy the following condition 1 and 2.

	Red	Green	Blue
Condition 1)	Total number of dark dot defect of R,G,B≦5pcs		
Condition 2)	Total number of da	rk dot defect of R,G≦3pcs	

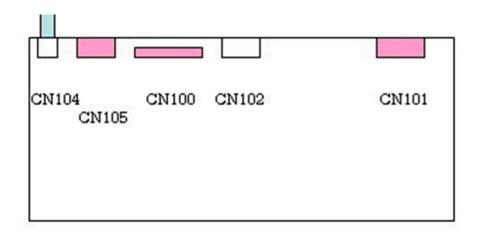
2-4. Foreign Matter, Line-shaped Foreign Matter and Air Bubbles


Foreign Matter Standard (Applied to the Light Emitting Area)

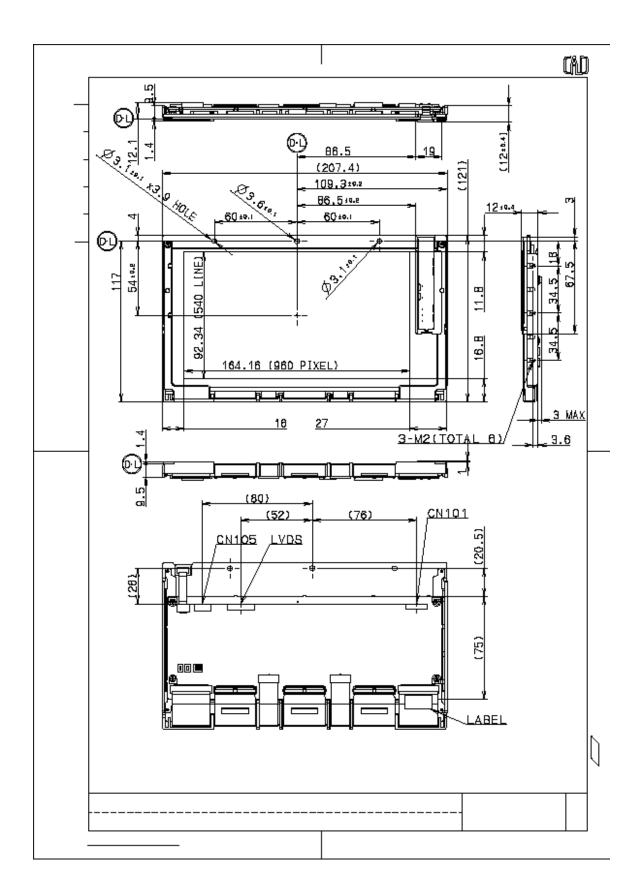
Туре	Size [mm]		Standard	Distance between	Conditions
				adjacent defects	
Dot-shaped	D ≤ 0.2		No Count		Power ON or OFF
foreign matter	0.2 mm < D ≤ 0.	25	2	5 mm or less is	
	0.25 < D		0	rejected.	
Line-shaped	W ≤ 0.02			No Count	
foreign matter	0.02 < W ≤0.05	L≤ 2.0	1	1	
	0.05 < W	2.0 < L	0	0	

Air Bubble Standard

	Size [mm]	Standard	Distance between
			adjacent defects
Air bubble	D ≤ 0.2	No Count	
	0.2 < D ≤ 0.25	4	5 mm or less is
	0.25 < D	0	rejected.


Mechanical specifications

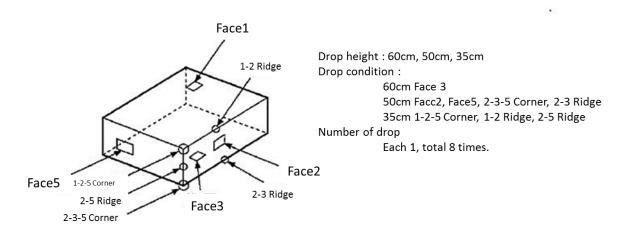
For details, see the appearance on the next page.


Item	Value	
Package dimensions	Horizontal	207.4 mm
	Vertical	121.0 mm

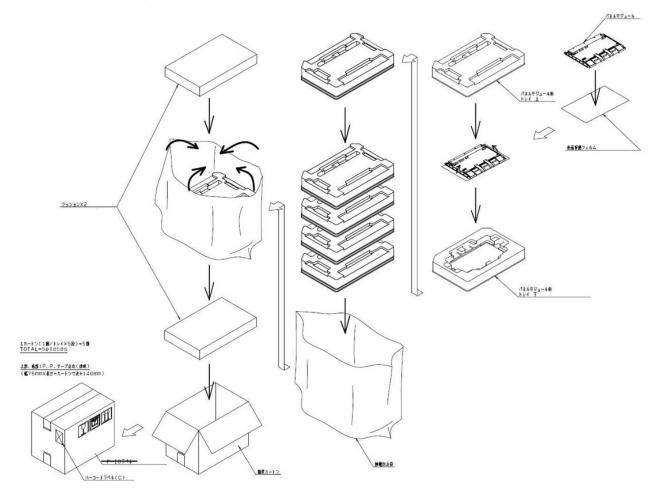
	Thickness	12.0 mm (maximum thickness position 14.6 mm)
Display area	Horizontal	164.160 mm
	Vertical	92.340 mm
Weight	310 g (typ.)	

TCON board

ECX109AKN-6



Reliability


Environmental test

Test item		Conditions		Judgment criteria	
	High temperature test		50 °C	Test time: 5 h (operation)	For high temperature
Environment	High temperature & high Environment humidity test		40 °C /95 %	Test time: 48 h (no-operation)	
Low temperature test Low pressure operation		-10 °C	Test time: 5 h (no-operation)	and high humidity test, low air pressure and operation test, there should be no problem in operation. For others, there should be no problem in operation and function.	
		470 hPa	Operation for 15 minutes or more		
Temperature cycle		-30 to 60 °C	12 h, 2 cyc		
ESD Surface discharge in air (15 kV)		150 pF/330 Ω	1 cm pitch on the periphery		
Vibration (for packaged products)		20 min, each in the X, Y and Z direction 5 to 50Hz random vibration acceleration: 8.1m/s^2			

Drop test condition

Packing and transportation specification (example)

Notes on Handling

• Take all possible light-shielding steps on the whole PS board (sensor board) so that the entry of external light to the sensor block will be prevented.

• Be sure not to apply external force to PS board. Position change of it may cause display performance that is different from the setting such as ColorTemp.

- · Use fixing screws under the specified condition below.
 - Side (right-left 3 places) M2 length 4 mm or less (effective screw length inside the module) 0.19 Nm
 - Upper (3 places) M3 length 3 mm or more 0.80 Nm
- Be sure not to touch TCP/FPC block, as this may be removed from the panel.

· For the organic electroluminescence panel in general, image retention may occur due to the characteristic of the material that is

adopted to realize the high resolution image. To keep displaying fixed image or display it repeatedly at the same position on the screen

cannot delete the image that has been retained.

The countermeasure such as avoiding fixed display including character display, setting screen saver function or frequent power-OFF is effective to reduce the image retention.

1. Static charge prevention

Be sure to take the following protective measures. OLED panels (modules) are easily damaged by static charges.

- (1) Use non-chargeable gloves, use bare hands.
- (2) Use a wrist strap when handling.
- (3) Do not touch any electrodes of the panel.
- (4) Wear non-chargeable clothes and conductive shoes.
- (5) Install grounded conductive mats on the working floor and working table.
- (6) Keep the panel (module) away from any charged materials.
- (7) Use ionized air to discharge the panel (module).

2. Protection from dust and dirt

- (1) Operate in a clean environment.
- (2) Do not touch the AR film surface. The surface is easily scratched. When cleaning, use a clean-room wiper with isopropyl alcohol. Be careful not to leave stains on the surface.
- (3) Use ionized air to blow dust off the panel surface.

3. Others

- (1) Do not drop the panel (module).
- (2) Do not twist or bend the panel (module).
- (3) Keep the panel (module) away from heat sources.
- (4) Do not dampen the panel (module) with water or other solvents.
- (5) Do not store or use of the panel (module) at high temperatures or high humidity, as this may affect the characteristics.
- (6) Condensation occurs on the panel (module) when stored in a place where temperature changes rapidly. Store it in a place where

temperature changes as small as possible to avoid condensation.