SPEC No. LD-20132B APREPARED BY: DATE SHARP FILE No. ISSUE : Mar. 06. 2008 APPROVED BY: DATE PAGE : 23 pages MOBILE LIQUID CRYSTAL DISPLAY GROUP APPLICABLE GROUP SHARP CORPORATION MOBILE LIQUID CRYSTAL DISPLAY **GROUP SPECIFICATION** Revised : Jun. 19. 2008 DEVICE SPECIFICATION FOR TFT-LCD Module MODEL No. LQ050W1LA0A

CUSTOMER'S	APPROVAL
DATE	

ВУ

PRESENTED

BY H. Shiund

K. SHIONO

Department General Manager

Engineering Dept.

MOBILE LCD DIVISION III

MOBILE LIQUID CRYSTAL DISPLAY GROUP

SHARP CORPORATION

RECORDS OF REVISION

LQ050W1LA0A

^SPEC No.	DATE	DEVILOED		SUMMARY	NOTE
- OF LO INU.	DATE	REVISED	PAGE	JUNINIANTI	NOTE
1.D. 004004		No.	PAGE		4st I
LD-20132A	Mar.06.2008	-	-		1 st Issue
LD-20132B	Jun.19.2008	1	7	5. Absolute Maximum Ratings	2 nd Issue
				Touch panel input voltage	
				Added: Remark [Note 3]	
			9	6-2. Backlight driving	
				LED life time	
				Added: Typ.15000H	
			12	7. Touch panel characteristics	
				Input voltage	
				Revised: Max. 7.0V 5.5V	
			20	16. Reliability Test Items	
				Touch panel testing apparatus	
				Revised: 4.9N 2.4N	
			21	17. Label	
				1) Module Bar cord label	
				Revised: 1) Module label	
					
	_				
	+				

These specification sheets are the proprietary product of SHARP CORPORATION("SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

In case of using the device for applications such as control and safety equipment for transportation(aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment(trunk lines), nuclear power control equipment and medical or other equipment for life support.

SHARP assumes no responsibility for any damage resulting from the use of the device, which does not comply with the instructions, and the precautions specified in these specification sheets.

Confirm "13. Handling Precautions" item when you use the device.

Contact and consult with a SHARP sales representative for any questions about this device.

Table of contents

1. Application	3
2. Overview	3
3. Mechanical Specifications	3
4. Input Terminals	4
4 - 1. Symbol	4
4 - 2. Function.	4
4 - 3. LVDS interface block diagram	6
5. Absolute Maximum Ratings	7
6. Electrical Characteristics	7
6 - 1. TFT-LCD panel driving	7
6 - 2. Backlight driving	9
6 - 3. LVDS input specification	11
6 - 3 - 1. AC characteristics	11
6 - 3 - 2. LVDS data	12
7. Touch panel characteristics	12
8. Timing Characteristics of Input Signals	12
8 - 1. Timing characteristics	
8 - 2. Input data signals and display position on the screen	
9. Input Signals, Basic Display Colors and Gray Scale of Each Color	14
10. Optical Characteristics	
11. Display Quality	16
12. Design guidance for touchpanel(T/P)	17
12 - 1. Example of housing design	17
12 - 2. Mounting on display and housing bezel	17
13. Handling Precautions	
14. Packing Form	19
15. Storage condition	19
16. Reliability Test Items	20
17. Label	21
18. RoHS Regulations	21
Fig. 1 Packing form	22
Fig. 2 Outline Dimensions	23

1. Application

This specification applies to a color TFT-LCD module, LQ050W1LA0A.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, a control circuit and power supply circuit, a backlight unit, and a touch panel. Graphics and texts can be displayed on a $1024 \times 3 \times 600$ dots panel with 262,144 colors by using LVDS (Low Voltage Differential Signaling) to interface and supplying +3.3V DC supply voltage for TFT-LCD panel driving and supply voltage for backlight.

In this TFT-LCD panel, low reflection / color filters of excellent color performance and backlights of high brightness are incorporated to realize brighter and clearer pictures, making this model optimum for use in multi-media applications.

Optimum viewing direction is 6 o'clock.

Backlight-driving LED controller is built in this module.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	12.6 (5.0") Diagonal	cm
Active area	109.1 (H)×63.9 (V)	mm
	1024 (H)×600 (V)	pixel
Pixel format	(1 pixel = R+G+B dots)	
Pixel pitch	0.106 (H)×0.106 (V)	mm
Pixel configuration	R,G,B vertical stripe	
Display mode	Normally white	
Surface treatment	Glare and hard-coating (2H)	

Parameter	Min.	Тур.	Max.	Unit	
Unit outline dimensions [Note 1]	Width	118.7 119.0		119.3	mm
	Height	76.0	76.3	76.6	mm
	Depth	_	5.4	5.6	mm
Mass	_	67	72	g	

[Note 1] Outline dimensions is shown in Fig.2

Excluding Touch Panel FPC.

4. Input Terminals

4 - 1. Symbol CN1 (LVDS signals,+3.3V DC power supply,B/L power supply,B/L control signal and TP signal)

Pin No.	Symbol	Pin No.	Symbol
2	TP_X2	1	TP_Y2
4	TP_X1	3	TP_Y1
6	GND	5	GND
8	SHTDB	7	BLVcc
10	BRT	9	BLVcc
12	GND	11	BLVcc
14	CKIN+	13	GND
16	CKIN-	15	GND
18	RxIN2+	17	GND
20	RxIN2-	19	GND
22	RxIN1+	21	GND
24	RxIN1-	23	GND
26	RxIN0+	25	Vcc
28	RxIN0-	27	Vcc
30	GND	29	Vcc

4 - 2. Function

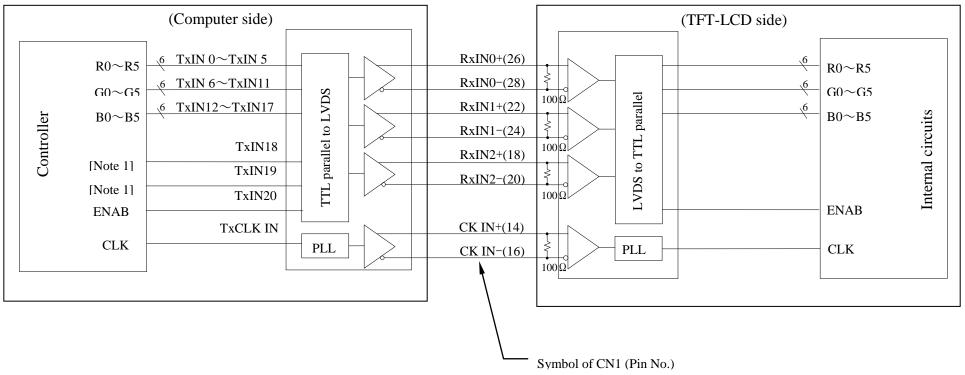
Pin No.	Symbol	Function	Remark
Power Supply			
25	Vcc	+3.3V power supply	
27	Vcc	+3.3V power supply	
29	Vcc	+3.3V power supply	
7	BLVcc	+5.0~20V power supply (For Backlight driver)	
9	BLVcc	+5.0~20V power supply (For Backlight driver)	
11	BLVcc	+5.0~20V power supply (For Backlight driver)	
5	GND		
6	GND		
12	GND		
13	GND		
15	GND		
17	GND		
19	GND		
21	GND		
23	GND		
30	GND		

LVDS	signal		
14	CK IN+	Receiver signal of LVDS CLK (+)	[Note 1]
16	CK IN-	Receiver signal of LVDS CLK (-)	[Note 1]
18	RxIN2+	Receiver signal of LVDS CH2 (+)	[Note 1]
20	RxIN2-	Receiver signal of LVDS CH2 (-)	[Note 1]
22	RxIN1+	Receiver signal of LVDS CH1 (+)	[Note 1]
24	RxIN1-	Receiver signal of LVDS CH1 (-)	[Note 1]
26	RxIN0+	Receiver signal of LVDS CH0 (+)	[Note 1]
28	RxIN0-	Receiver signal of LVDS CH0 (-)	[Note 1]
B/L contr	rol signal		
8	SHTDB	Backlight ON/OFF control signal	
10	BRT	Backlight dimming control signal	
Touch Pa	nel signal		
1	TP_Y2	Touch panel Y Bottom terminal	
2	TP_X2	Touch panel X Left terminal	
3	TP_Y1	Touch panel Y Top terminal	
4	TP_X1	Touch panel X Right terminal	

[Note 1] Relation between RxINi(i=0,1,2) and actual data is shown in following section (4-2)(7-2).

[Note 2] The shielding case is connected with signal GND.

Using connector: (DF30FB-30DS-0.4V (HIROSE))


 $Corresponding\ connector: (DF30FB-30DP-0.4V\ (HIROSE))$

(Sharp is not responsible to its product quality, if the user applies a connector not corresponding to the above model.)

4 - 3. LVDS interface block diagram

Using receiver: Single LVDS interface contained in a control IC

Corresponding Transmitter: THC63LVDM63A (THINE) or equivalent

[Note 1] Do not use at high-impedance TxIN 18 - 19.

5. Absolute Maximum Ratings

	a	a]	Ratings	Linit		
Parameter	Symbol	Condition	Min.	Max.	Unit	Remark	
Input voltage	V _I	Ta=25°C	-0.3	Vcc+0.3	V	[Note 1]	
+3.3V supply voltage	Vcc	Ta=25°C	0	+4.0	V		
LED power supply voltage	BLVcc	Ta=25°C	0	+28.0	V		
LED bright control signal	BRT	Ta=25°C	0	+5.0	V		
LED ON/OFF signal	SHTDB	Ta=25°C	0	+5.0	V		
Storage temperature	Tstg	_	-25	+70	$^{\circ}\!\mathbb{C}$		
(ambient)						DI 4 21	
Operating temperature	Topa	_	0	+60	$^{\circ}\!\mathbb{C}$	[Note 2]	
(Panel surface)							
Touch panel input voltage	Vtp	Ta=25°C	0	7.0	V	[Note 3]	

[Note 1] LVDS signals

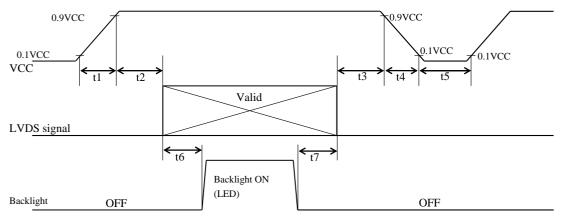
[Note 2] Humidity : 95%RH Max. at $Ta \le +40^{\circ}C$.

Maximum wet-bulb temperature at $+39^{\circ}$ C or less at Ta> $+40^{\circ}$ C.

No condensation.

[Note 3] TP_X1,TP_Y1,TP_X2,TP_Y2: When touch panel controller is connected.

6. Electrical Characteristics


6 - 1. TFT-LCD panel driving

Ta=+25°C

Parameter		Symbol	Min.	Тур.	Max.	Unit	Remark
Supply voltage		Vcc	+3.0	+3.3	+3.6	V	[Note 2]
Current dissipation		Icc	_	120	160	mA	[Note 3]
Permissive input ripple v	oltage	V _{RP}	_	_	100	mV _{P-P}	Vcc = +3.3V
Input voltage range		V _I	0		2.4	V	LVDS signals
Differential input	High	V _{TH}	_	_	+100	mV	$V_{CM} = +1.2V$
threshold voltage	Low	V_{TL}	-100	_	_	mV	[Note 1]
Input current (High)		I _{OH}	_	_	±10	μΑ	$V_{I} = +2.4 \text{V Vcc} = +3.6 \text{V}$
Input current (Low)		I _{OL}	_	_	±10	μΑ	$V_I = 0V \text{ Vcc} = 3.6V$
Termination resistor		R _T	_	100	_	Ω	Differential input

[Note 1] V_{CM} : Common mode voltage of LVDS driver.

[Note 2] On-off conditions for supply voltage

Symbol	Min.	Max.	Remark	
t1	0	10	ms	
t2	0	1	S	
t3	0	1	S	
t4	0	400	ms	
t5	200	_	ms	
t6	180	_	ms	*1
t7	5	_	ms	*1

*1 : As for the power sequence for backlight, it is recommended to apply above mentioned input timing. If the backlight is lit on and off at a timing other than shown above, displaying image may get disturbed. This is due to variation of output signal from timing generator when LVDS signal is changed from on to off or vice versa, but has no harm to the module itself.

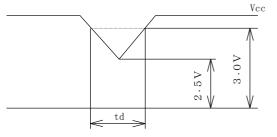
[Note] Do not keep the interface signal high-impedance or unusual signal when power is on.

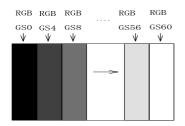
Vcc-dip conditions

1) $2.5 \text{ V} \le \text{Vcc} < 3.0 \text{ V}$

 $td \leq 10 \text{ ms}$

Under above condition, the display image should return to an appropriate figure after Vcc voltage recovers.


2) Vcc < 2.5 V


Vcc-dip conditions should also follow the On-off conditions for supply voltage

[Note 3] Typical current situation : 16-gray-bar pattern.

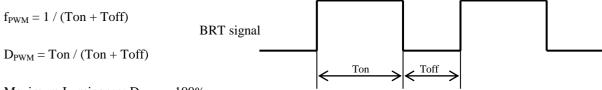
Vcc=+3.3V

Maximum current situation: Vcc=+3.6V

6 - 2. Backlight driving

The backlight system is edge-lighting type with LED.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Supply voltage range	BLVcc	+5.0	+7.4	+20.0	V	[Note 1]
Current dissipation	_	_	125	240	mA	[Note 1,2]
	_	_	_	100	uA	[Note 3]
Permissive input ripple voltage	_	_	_	100	mV _{P-P}	[Note 1]
Input signal voltage range	_	0	_	5.0	V	[Note 4]
Input signal High level threshold	_	2.7	_	_	V	[Note 4]
Input signal Low level threshold	_	_	_	0.2	V	[Note 4]
PWM frequency	f_{PWM}	200	300	400	Hz	[Note 4,5]
PWM Duty ratio	$\mathrm{D}_{\mathrm{PWM}}$	1	_	100	%	[Note 4,5]
LED life time	_	10000	15000	_	Hour	[Note 6]


[Note 1] BLVcc

[Note 2] Typ: BLVcc = 7.4V , Max: BLVcc = 5.0V ; $D_{PWM} = 100\%$

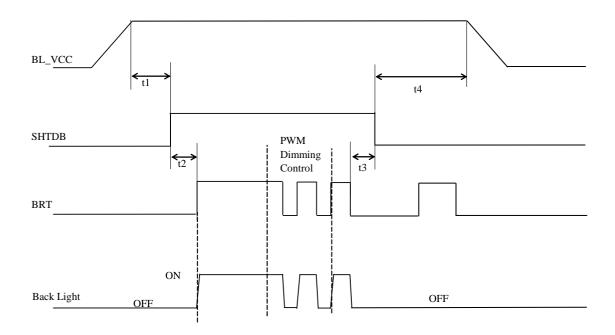
[Note 3] BLVcc = 7.4V,SHTBD="Lo"

[Note 4] BRT,SHTDB

[Note 5] PWM dimming control signal (BRT)

Maximum Luminance: $D_{PWM} = 100\%$

In case of using the low frequency, the deterioration of display quality, flicker, etc, may occur.


[Note 6] $D_{PWM} = 100\%$ Ta=25°C continuous operation

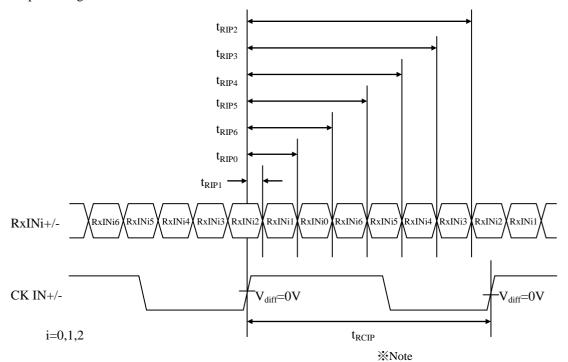
LED life time is defined as the time when Brightness becomes $50\ \%$ of the original value under standard condition.

[Note 7] Backlight ON/OFF function

SHTDB	BRT	Backlight				
"Lo"	_	OFF				
"Hi"	"Lo"	OFF				
	"Hi"	ON				

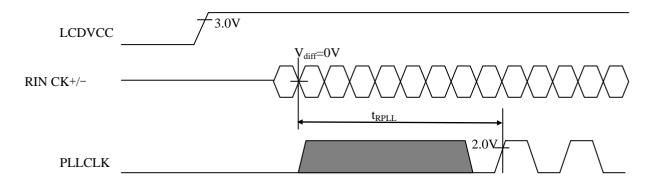
[Note 8] Power supply input sequence

Symbol	Min.	Max.	Unit	Remark
t1	0	_	ms	
t2	0	_	ms	
t3	0	_	ms	
t4	0	_	ms	

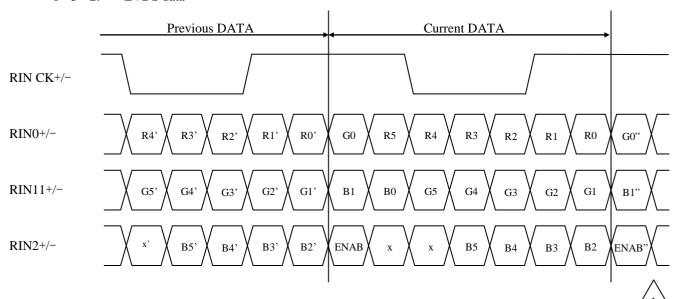

6 - 3. LVDS input specification

6 - 3 - 1. AC characteristics

$VCC-\pm 3$	$.0V \sim +3.6V$	$I = T_2 - 0^{\circ}$	`~⊥60°С
v (.(.=+)	$.000 \sim \pm 0.00$	i. Ta-ut	.∕~+n∪ (.


Parameter	Symbol	Min	Тур.	Max.	Unit
Input Data Position 0 (tRCIP=20.48ns)	t _{RIPI}	-0.25	0.0	+0.25	ns
Input Data Position 1 (tRCIP=20.48ns)	t _{RIP0}	t _{RCIP} /7-0.25	t _{RCIP} /7	$t_{RCIP}/7 + 0.25$	ns
Input Data Position 2 (tRCIP=20.48ns)	t _{RIP6}	2 t _{RCIP} /7-0.25	2 t _{RCIP} /7	2 t _{RCIP} /7+0.25	ns
Input Data Position 3 (tRCIP=20.48ns)	t _{RIP5}	3 t _{RCIP} /7-0.25	3 t _{RCIP} /7	$3 t_{RCIP} / 7 + 0.25$	ns
Input Data Position 4 (tRCIP=20.48ns)	t _{RIP4}	4 t _{RCIP} /7-0.25	4 t _{RCIP} /7	$4 t_{RCIP} / 7 + 0.25$	ns
Input Data Position 5 (tRCIP=20.48ns)	t _{RIP3}	5 t _{RCIP} /7-0.25	5 t _{RCIP} /7	$5 t_{RCIP} / 7 + 0.25$	ns
Input Data Position 6 (tRCIP=20.48ns)	t _{RIP2}	6 t _{RCIP} /7-0.25	6 t _{RCIP} /7	6 t _{RCIP} /7+0.25	ns
Phase Lock Loop Set	t _{RPLL}	_	_	10	ms
Input Clock Period	t _{RCIP}	18.52	20.48	20.83	ns

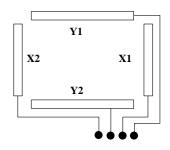
LVDS input timing



LVDS phase lock loop set

Vdiff=(RxINi+)-(RxINi-), (CK IN+)-(CK IN-)

6 - 3 - 2. LVDS data

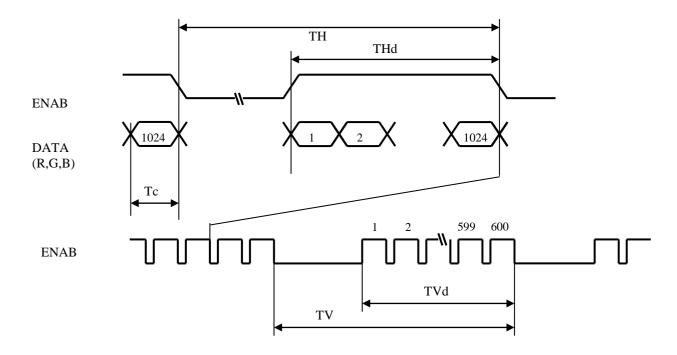


7. Touch panel characteristics

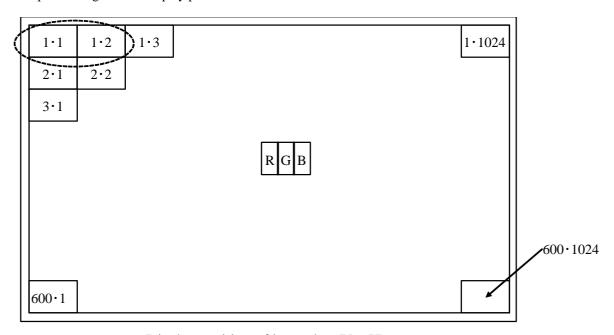
Parameter	Min.	Тур.	Max.	Unit	Remark
Input voltage	-	5.0	5.5	V	[Note 2]
Resistor between terminals(TP_X1-TP_X2)	250	510	850	Ω	
Resistor between terminals(TP_Y1-TP_Y2)	100	180	300	Ω	
Line linearity(X direction)	-	-	1.5	%	
Line linearity(Y direction)	-	-	1.5	%	
Insuration resistance	20	-	-	ΜΩ	at DC15V
Minimum tension for detecting	-	-	0.8	N	
Chattering	-	-	10	ms	

[Note 1] Wiring diagram of touch panel

[Note 2] When touch panel controller is connected.


8. Timing Characteristics of Input Signals

8 - 1. Timing characteristics


Vcc=+3	$.0V \sim +3.6V$	I. Ta=0	℃~+60℃

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	48	48.836	54	MHz	[Note 1]
			1260	1312	1408	clock	
	Horizontal period	TH	24.512	26.865	_	μ s	
Data enable	Horizontal period (High)	THd	1024	1024	1024	clock	
Signal	**		603	621	900	Line	
	Vertical period	TV	16.069	16.683	_	ms	
	Vertical period (High)	TVd	600	600	600	line	

[Note 1] In case of using the long vertical period, the deterioration of display quality, flicker, etc, may occur.

8 - 2. Input data signals and display position on the screen

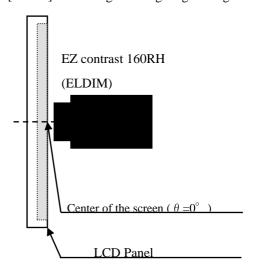
Display position of input data(V \cdot H)

9. Input Signals, Basic Display Colors and Gray Scale of Each Color

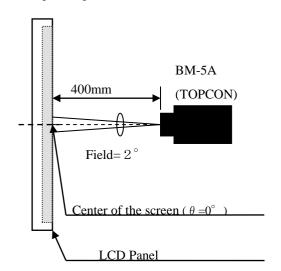
ĺ	Colors &	Data signal																		
	Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	B1	B2	В3	B4	В5
	Black	—	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Green		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gra	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/ Sca	\uparrow	\downarrow				,					,	l					,	\downarrow		
Gray Scale of Red	\downarrow	\downarrow									,	ļ					,	\downarrow		
Red	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	\downarrow	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	\uparrow	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
iray :	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Scale	\uparrow	\downarrow				ļ					,						,	\downarrow		
Gray Scale of Gr	\downarrow	\downarrow				ļ						<u> </u>					,	<u> </u>		
ireen	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
	\downarrow	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\uparrow	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
з̀гау	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Scale	\uparrow	\downarrow				ļ					`	l					,	\downarrow		
Gray Scale of Blue	\downarrow	\downarrow				ļ						<u> </u>					,	<u> </u>		
3lue	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	\downarrow	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

0: Low level voltage, 1: High level voltage

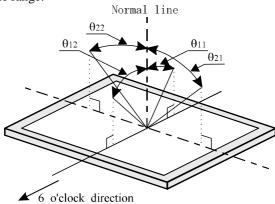
Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.


10. Optical Characteristics

Ta=+25°C, Vcc=+3.3V

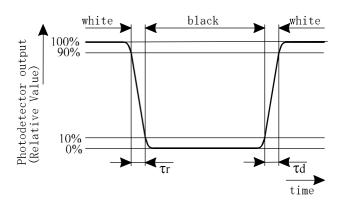

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Horizontal	θ 21, θ 22		60	70	_	Deg.	
Viewing	T Y 1	θ 11	CR>10	40	50	_	Deg.	[Note 1,3,6]
angle range	Vertical	θ 12		50	60			
		CRn	$\theta = 0^{\circ}$	300	_	_		
Contrast ratio		CRo	Optimum viewing angle	300	450	_		[Note 2,4,6]
Response ti	me	τ r+ τ d		l	30	60	ms	[Note 2,4,6]
Chromatici	tv of white	X	$\theta=0^{\circ}$	0.264	0.314	0.364		DV - 4.6
		y		0.284	0.334	0.384		[Note 2,6]
Luminance of white [Note 2,6]		Y_{LI}		250	350	_	cd/m ²	$D_{PWM} = 100\%$
White Unifo	ormity	δ w		_	1.10	1.30		[Note 2,7]

 $[\]divideontimes$ The measurement shall be executed 30 minutes after lighting at rating. Condition : $D_{PWM}=100\%$ The optical characteristics shall be measured in a dark room or equivalent.

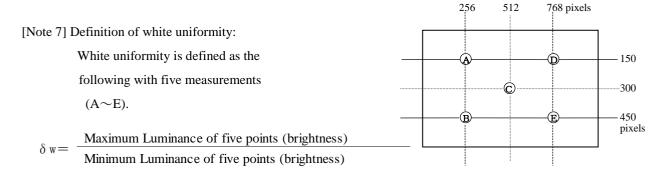

[Note 1] Measuring Viewing Angle Range

[Note 2] Other Measurements

[Note 3] Definitions of viewing angle range:



[Note 4] Definition of contrast ratio:


The contrast ratio is defined as the following.

[Note 5] Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

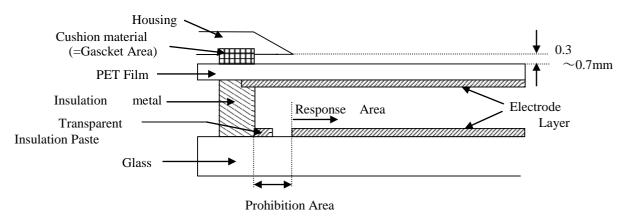
[Note 6] This shall be measured at center of the screen.

11. Display Quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

12. Design guidance for touchpanel(T/P)

12 - 1. Example of housing design


- (1)If an consumer will put a palm on housing in normal usage, care should be taken as follows.
- (2)Keep the gap, for example 0.3 to 0.7mm,between bezel edge and T/P surface.

 The reason is to avoid the bezel edge from contacting T/P surface that may cause a "short" with bottom layer(See Fig.4)
- (3)Insertion a cushion material is recommended.
- (4)The cushion material should be limited just on the busbar insulation paste area. If it is over the transparent insulation paste area, a "short" may be occurred.
- (5)There is one where a resistance film is left in the T/P part of the end of the pole.

 Design to keep insulation from the perimeter to prevent from mis-operation and so on.

12 - 2. Mounting on display and housing bezel

- (1)In all cases, the T/P should be supported from the backside of the glass.
- (2)Do not to use an adhensive-tape to bond it on the front of T/P and hang it to the housing bezel.
- (3)Never expand the T/P top layer(PET-film) like a balloon by internal air pressure. The life of the T/P will be extremely short.
- (4)Top layer, PET, dimension is changing with environmental temperature and humidity. Avoid a stress from housing bezel to top layer, because it may cause "waving".
- (5) The input to the Touchpanel sometimes distorts touch panel itself.

13. Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the touch panel surface is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling.

 Observe all other precautionary requirements in handling components.
- h) This module has its circuitry PCBs on the rear side and should be handled carefully in order not to be stressed.
- i) Protect sheet is attached to the module surface to prevent it from being scratched. Peel the sheet off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action. Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc..
- j) Do not expose the LCD module to a direct sunlight, for a long period of time to protect the module from the ultra violet ray.
- k) Connect GND of module bezel to stabilize against EMI and external noise.
- I) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- m) Adjusting volume have been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- n) Disassembling the module can cause permanent damage and should be strictly avoided.
 - Do not peel off the tapes, and do not remove an internal connector.
 - The final form of the module is Figure 2.
- o) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- p) Please handle carefully not to charge excessive stress onto the back of the module. Excessive stress may cause unrepairable damage to the module.
- q) Don't give stress on the surface of the touch panel continuously. It causes unevenness (in such cases as the Newton's Ring) in the touch panel surface.
- r) Liquid crystal contained in the panel may leak if the LCD is broken. Rinse it as soon as possible if it gets inside your eye or mouth by mistake.

14. Packing Form

Piling number of cartons	Max. 8
Package quantity in one carton	100pcs
Carton size	575mm(W)×360mm(D)×225mm(H)
Total mass of one carton filled with full modules	10.8kg
Packing form	Fig.1

15. Storage condition

Temperature $0\sim40^{\circ}$ C

Humidity 60% or less

(no condensation)

Storage term 1 year

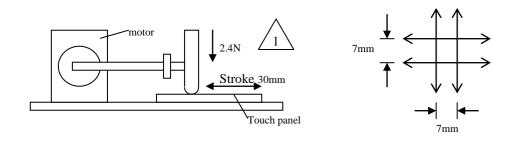
Precautions

·Direct sunlight

Store it in the packing box or the darkroom to avoid direct sunlight.

Atmosphere

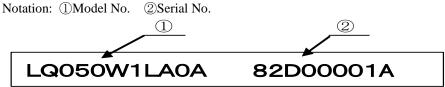
Do not store in a place the causticity gas may occur or near the volatile solvent.

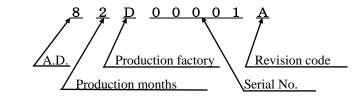

- ·Condensation
 - •Do not put directly on the floor, and keep the wrapping box on the palette or the stand to avoid the condensation. Moreover, arrange it in a constant direction correctly to improve ventilation under the palette.
 - •Keep it separate from the wall in the storage warehouse.
 - ·Note that ventilation is improved and consider the installation such as ventilators in the warehouse.
 - •Manage so that there is no rapid temperature change more than natural environment.

16. Reliability Test Items

No.	Test item	Conditions
1	High temperature storage test	$Ta = 70^{\circ}C$ 240h
2	Low temperature storage test	$Ta = -25^{\circ}C$ 240h
3	High temperature	Ta = 40°C ; 95 %RH 240h
	& high humidity operation test	(No condensation)
4	High temperature operation test	$Tp = 60^{\circ}C$ 240h
		(Panel surface temperature)
5	Low temperature operation test	Ta = 0°C 240h
6	Thermal Shock Test	$+70^{\circ}\text{C}(1\text{hours}) \Leftrightarrow -20^{\circ}\text{C}(1\text{hours})$ 2hours per cycle
	(non- operating)	Temperature change time:10°C/minute
		Tested for 5 cycles
7	Vibration test	Frequency range: 10~55~10Hz
	(non- operating)	Stroke: 1.5mm
		Sweep time: 1minutes
		Test period: 2 hour for each direction of X,Y,Z
8	Shock test	Max. gravity: 980 m/s2
	(non- operating)	Pulse width: 6 ms, sine wave
		Direction: $\pm X, \pm Y, \pm Z$
		3 times for each direction.
9	Point activation test	Hit it 1,000,000 times with a silicon rubber of R8 HS 60.
	(Touch panel)	Hitting force :4.9N
		Hitting speed: 3 times per second
10	Writing friction resistance test	Write according to the right illustration in the under -mentioned
	(Touch panel)	conditions:
		Pen: 0.8R Polyacetal stylus
		Load: 2.4N
		Speed: 3 strokes per second
		Stroke: 30mm
		Frequency: 50000 times
11	ESD	$\pm 200 \text{V}$,200pF(0 Ω) 1time/each terminal

[Result Evaluation Criteria] Under the display quality test conditions with normal operation state, these shall be no change, which may affect practical display function.

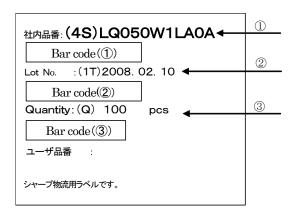

[Normal operation state] Temperature : $+15 \sim +35 ^{\circ}$ C, Humidity : $45 \sim 75 \%$, Atmospheric pressure : $86 \sim 106$ kPa [Touch panel testing apparatus]



17. Label

1) Module label:

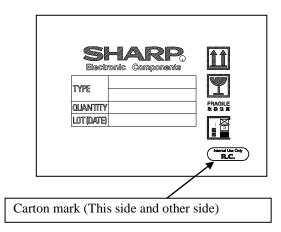
Serial No.



(Production months)

1-9(Jan.-Sep.), X(Oct.), Y(Nov.), Z(Dec)

2) Packing bar code label


Notation/ Bar code: ①Model No. ②Date ③Quantity

18. RoHS Regulations

This component comply with RoHS Regulations.

Carton mark

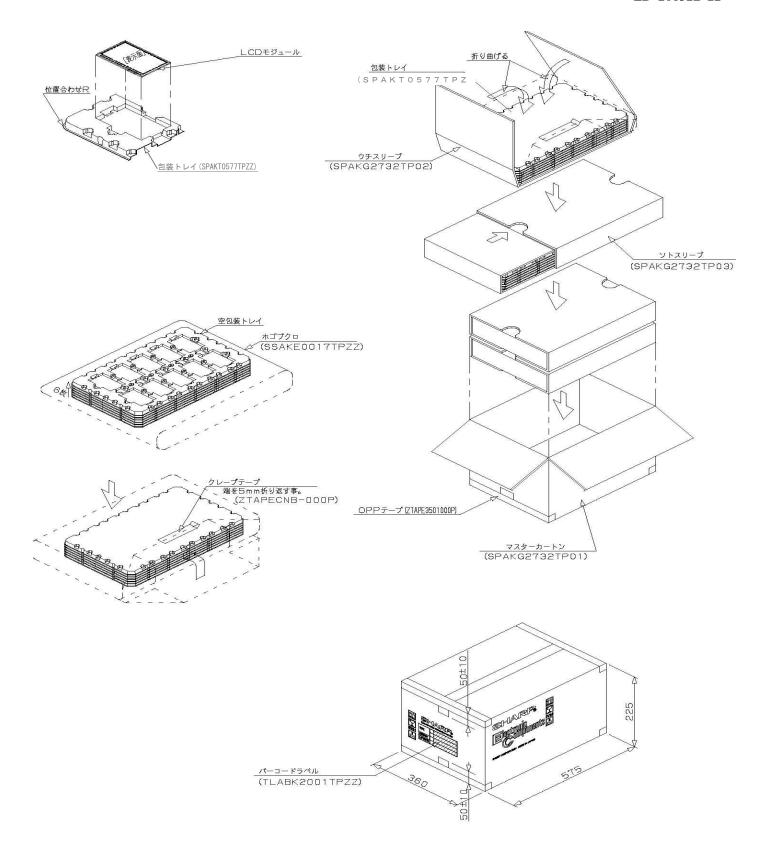
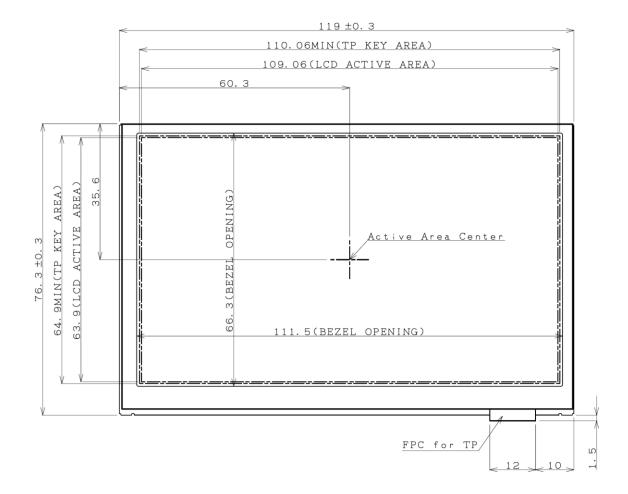
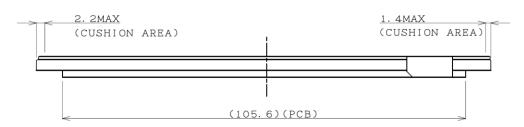
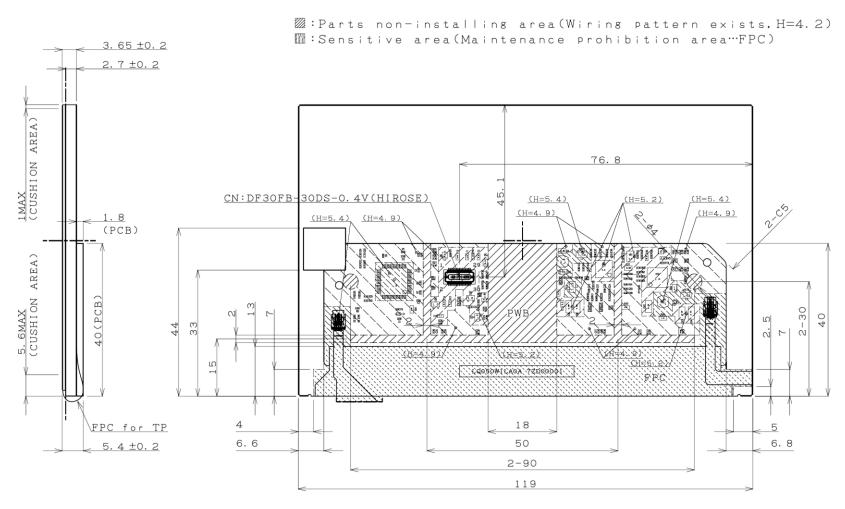





Fig. 1 Packing form

NOTES

- 1. UNSPECIFIED TOLERANCE TO BE ±0.5 2. WARP AND FLATING FOR
- PCB AND CHASSIS ARE EXCLUDED FROM THICKNESS AND DIMENSION OF THE UNIT.

D/N:2D-078-142-03

Fig. 2 Outline Dimensions